
XIOS/3 Development Manual
Generated 06/09/2022

Copyright 2022 XIOS/3 AB

2
8
8
9
9
9

10
10
10
11
11
11
11
12
12
12
15
17
20
20
21
21
21
21
22
23
24
25
26
26
28
28
28
28
30
30
30
30
31
31
31
32
33
33
33
33
33
33
33
34
34
34
34
34
34
34
34
34
34
34
34
35
35
35
35
35
35
35
35
35
35
35
35
36
36
36

Table of Contents
Table of Contents
XIOS/3 Development
Launching XIOS/3
Application Development
The MVC Design
Structure
Data XML (Model)
UI XML (View)
Process XML (Control)
Introducing the XIOS/3 Filesystem
File Properties
System Permissions
Performing Actions
Using the XIOS/3 Filesystem
Overall Structure
Managing Files
Managing Folders
Managing Groups
Managing File Types
Searching the Filesystem
Development Tools
XIOS Applications
Icons and Images
Application Packaging
Overall Structure
Regular Package
Inline Package
Widget
Extending XIOS/3
Additional Components
Additional Operations
UI Development
Overall Structure
View
Toolbars
Menubars
Layout
Using Components
Types
Attributes
Attribute values
Common attributes
Events

AlignCenterRelease
AlignCenterSelect
AlignJustifiedRelease
AlignJustifiedSelect
AlignLeftRelease
AlignLeftSelect
AlignRightRelease
AlignRightSelect
Attached
BGColorRelease
BGColorSelect
Blur
BoldRelease
BoldSelect
BulletListRelease
BulletListSelect
Change
Changed
Click
Close
Closing
Complete
Completed
ContextMenu
DateChanged
DecorationRelease
DecorationSelect
Delete
Detached
DoubleClick
drawingComplete
DrawMode
drawModeOff

XIOS/3 Developer Manual - 2022-06-09 2/164

36
36
36
36
36
36
36
36
36
37
37
37
37
37
37
37
37
37
37
37
37
38
38
38
38
38
38
38
38
38
38
39
39
39
39
39
39
39
39
39
39
39
39
40
40
40
40
40
40
40
40
40
41
41
41
41
42
42
42
42
42
43
43
43
43
43
44
44
44
44
44
45
45
45
45
45
45
46
46
46
46
46
46
47
47
47

Drop
Edit
EditEnd
End
Empty
Escape
FGColorRelease
FGColorSelect
Focus
FontFamilyRelease
FontFamilySelect
FontSizeRelease
FontSizeSelect
Fullscreen
Header
HeaderContextMenu
Home
Hover
HttpHyperlink
Init
ItalicRelease
ItalicSelect
Key
Loading
Ready
Menu
MediaEnded
MediaRange
Move
MoveItem
Next
NumberListSelect
Paste
Previous
Release
Return
Saved
Select
SelectedDate
SelectMode
SelectedMore
SetActive
Show
SubjectMore
Tab
TriggerEvent
UnSelect
UnSelection
UpdateTime

Actions
activate
add
clear
disable
enable
hide
open
readonly
readwrite
release
select
setValue
show
unbind

Methods
activate
adjustVolume
appointmentColor
attach
callFlash
changeInterval
clear
clearContent
clearSearchLines
copyToClipboard
deleteShape
deselect
detach
disableAutoSpellcheck
edit
enableAutoSpellcheck
execCommand
executeCommand
executeScript
flashTab
focus

XIOS/3 Developer Manual - 2022-06-09 3/164

47
47
47
48
48
48
48
48
48
48
49
49
49
49
49
49
50
50
50
50
50
50
50
51
51
51
51
51
51
51
51
52
52
52
52
52
52
53
53
53
53
53
53
54
54
54
54
54
54
55
55
55
55
55
55
55
56
56
56
56
56
56
57
57
57
57
58
58
58
58
58
58
59
59
59
59
59
59
60
60
60
60
60
60
61
61
61

focusItem
focusSelection
getCurrentLabel
getCurrentPosition
getDataLocation
getDateValue
getDimension
getEndDate
getEndTime
getLat
getLineBottomMargin
getLineTopMargin
getLng
getMapType
getZoom
getNodePath
getParam
getPaste
getSelected
getSelectedItem
getSelectedText
getSelection
getSelectionLength
getSelectionValue
getSrcDataLocation
getStartDate
getStartTime
getText
getUpdateEnabled
getValue
getVolume
gotoLine
hideColumn
haveSelection
insertHyperlink
insertImage
insertText
lineNumbers
maximize
minimize
modStyle
navigateUp
next
nodeExpanded
pasteFromClipboard
pause
play
previous
print
printPresentation
release
releaseEnter
removeList
repeat
resetSelection
restore
restoreAppDlg
scale
search
searchMap
selectAll
selectFirstRow
selectLastRow
selectTab
setBulletType
setDimension
setEditableMode
setFont
setIcon
setImage
setLabel
setLineMargin
setLineIndent
setLook
setMode
setMute
setParam
setRange
setSelect
setSelectedDate
setSelectionEx
setSelectionRoot
setSkin
setTitle
setType
setUpdateEnabled
setValue

XIOS/3 Developer Manual - 2022-06-09 4/164

61
62
62
62
62
62
62
63
63
63
63
63
63
64
64
64
64
65
65
65
66
66
67
68
69
70
70
71
72
73
73
73
74
75
75
75
75
77
77
78
79
80
80
80
80
80
81
81
81
82
83
84
84
86
87
88
89
90
92
92
93
94
95
96
98
99
99

101
101
101
102
103
104
106
108
109
110
111
112
114
115

setView
setVolume
setWeekStartDay
showColumn
showControls
shuffle
sortColumn
stop
takeEnter
toggleCheckable
toggleNode
update
updateData
updateRedraw
wordWrap

Rules
Look and Feel
Process Development
Overall Structure
Process
Triggers
Steps
Aliases
Alias Types
System Aliases
Operation
Event Model
Component Events
View Events
System Events
Using Expressions
Definition
Using Operations
Attributes
Examples
Applications
Book List
Layout
Column Layouts
Mixed Layouts
Row Layouts
References
ActionUrls

lastLogins
leaveGroup
search
searchUser

Components
Accordion
Breadcrumbs
Browser
Button
ButtonBox
Calendar
CheckBox
Clock
Color
ComboBox
Container
DataItem
Date
Divider
Form
Grid
Group
Image
Input
Item
List Item
Menu Item
Plate Item
Label
List
ListView
Map
Media
Menu
MenuBar
Panel
Plate
Radio

XIOS/3 Developer Manual - 2022-06-09 5/164

116
117
118
120
121
122
123
124
125
126
126
126
126
126
127
127
127
127
128
128
128
128
129
129
129
129
130
130
130
131
132
132
132
132
133
133
133
133
134
134
134
134
135
135
135
136
136
136
136
136
137
138
139
140
141
143
143
144
146
146
147
152
153
153
154
155
156
157
158
159
159
160
161
162
162
162
162
163
163
163
163
163
163
163

Render
RichText
Shell
Slider
TabStrip
TextArea
ToolBar
Tree

Functions
apply-locale
capitalize
concat
count
count-selection
changes
channelname
contains
document
downcase
escape-string
filename
filetype
folderexist
folderid
foldername
folderpath
format-bytes
localizedate
formatdate
get-label
index-of
is-alias
is-open
is-running
local-name
match
parsedate
position
random
read
replace
selected-text
selection
substring
trim
trim
upcase
xml

Process Operations
action
bind
call
callMethod
callService
change
close
create
channel
debug
decision
filesystem
foreach
friends
groups
login
navigate
open
print
rollBack
setSelection
save
share
split

Dictionary
atom namespace
CSS Syntax
Content-Type
data transaction
dc namespace
fs namespace
l namespace
local-name
mutex
MIME type

XIOS/3 Developer Manual - 2022-06-09 6/164

163
163
163
163

ni namespace
text()
tool-tip
xlink namespace

XIOS/3 Developer Manual - 2022-06-09 7/164

XIOS/3 Development
Development and reference manual for XIOS/3. For an easier to digest introduction to XIOS/3 please have a look at the XIOS/3 Tutorial.

What is XIOS/3?
XIOS/3 is the world's most advanced environment for developing and running web applications. It allows you to use XML as the template
language to build visually rich applications in a higher abstraction level, with great capabilities of interacting with any server back-end
resource or code. One way of describing XIOS/3 is as a Edge Application Server, an Application Server on the client side used as a user
interface front-end for a Service Oriented Architecture (SOA).

Having a Edge Application Server at your disposal means that most of your application logic can be performed directly on the client, with a
minimal amount of server requests as an end result. The applications are executing within the web browser of the client, making XIOS/3 an
ideal partner with any server technology. Utilizing resources on the client, with reduced server dependency, drastically reduces the perceived
latency in web applications with a better user experience as a result.

XIOS/3 is designed to be what HTML would have been, if HTML had been designed for developing and running applications, not text-based
content. Using HTML with a JavaScript framework on top only gets you a bit on the way of creating rich applications, but if you want to develop
applications with usability close to installed software, XIOS/3 is the most efficient way.

A Complete Client Side Solution
The XIOS/3 technology is entirely located on the client side. It handles everything from the user interface and logic to communication and
underlying backend systems. It’s an application environment that provides a complete solution from UI components, through event routing,
data flow management and transaction engine, to service abstractions and protocol management. XIOS/3 is self contained with no server
components and also makes it possible to integrate to existing systems without requiring any changes to them.

What the Documentation Covers
This documentation is an introduction to XIOS/3 concepts, application development and packaging. In addition it contins a reference section
with all the included events, components and expression functions. Finally a collection of small examples. The first section you are reading
now contains basic information on how to quickly set up XIOS/3 for development and production deployment. The following chapter is the
Application Development section where you are introduced to how basic application development works and example of applications. This is
followed by Application Packaging describing how to create application packages for deployment. Next is the UI Development section,
describing the view part of MVC and how components are combined together. This is followed by the Process Development chapter describing
the Controller part. Finally is the reference sections of the manual.

Quick Start
To start using XIOS/3, take the zip archive and unzip it in the root of a webserver. Then go with your web browser to the location of your web
server and load the index.html file. Once loaded you are now running the XIOS/3 shell application. From here you can load any of your own
projects, e.g. "load demo.xml". Type "help" to see a list of options available in the shell application.

During development of XIOS/3 applications it may be convenient to have a local webserver running on your development computer. This can
host both XIOS/3 and the application you are writing. All of XIOS/3 code is contained within the "xios" directory, making it easy to drop XIOS/3
into any existing web server without conflict. It is however possible to host the web page on one server, XIOS/3 on another server and the
application on a third.

There are many webservers available to chose from, but one easy option available everywhere Python is installed, such as MacOS and most
Linux systems, is to use its built in web server. You can start it by opening a command shell in the directory you want as the root directory for
your web server, and type the following to open a web server on http://localhost:8080/

python -m SimpleHTTPServer 8080

Launching XIOS/3
XIOS/3 is loaded and initialized in multiple steps to support a distributed and flexible architecture. The first step is an HTML file that sets up
the initial loading conditions for the environment, both in term of fundamentals such as what the home domain name should be and if HTTP or
HTTPS is used, but also to give the developer the final say in how XIOS/3 is loaded.

In the HTML page the boot parameters for XIOS/3 is defined in the JavaScript object "boot". Then, when all deployment specific additions are
made, XIOS/3 bootloader is loaded into the page. It will load and start XIOS/3 according to the boot object.

HTML Loading Page
Minimally the HTML loading page only needs to load the boot loader, and it will default to load the shell application.

1 <html>
2 <head>
3 <meta charset="utf-8" />
4 </head>
5 <body style="overflow: hidden;">
6 <script src="xios/boot.js" charset="utf-8"></script>
7 </body>
8 </html>

Example: Minimal HTML loading page

Every deployment of actual code projects requires at least that XIOS/3 is given an application to start executing, instead of loading the shell
application. This is controlled by the startup member of the boot object. To load the example startup process "xios/config/startup.xml", att the
following script element to the HTML header.

1 <script>
2 var boot = {
3 startup : "xios/config/startup.xml"
4 };
5 </script>

Example: Define boot and load startup

The "xios/config/startup.xml" file accomplish two things. It defines a new protocol in XIOS/3 under the name "https" using the HTTPS protocol
module. This allows you to load data using https://-URLS within XIOS/3. Having done that it starts the shell application
"xios/apps/shell/shell.xml".

What should go into the startup document depends on your project. If you are making a stand alone application, you can point XIOS/3 startup
sequence to the main document directly. If you want to separate between the XIOS/3 environment and the applications running within it, it
could make sense to limit the start script to initialization and then hand over to external applications or another loader.

1 <process>
2 <step id="1" name="Start Shell">
3 <operation name="channel">
4 <name>https</name>

XIOS/3 Developer Manual - 2022-06-09 8/164

5 <title>HTTPS</title>
6 <protocol>HTTPS</protocol>
7 </operation>
8 <operation name="open" value="xios/apps/shell/shell.xml"/>
9 </step>

10 </process>

Example: startup.xml

Whenever network activity occurs XIOS/3 will make the DOM element "activityLayer" visible. This allows you to design overlays that signals
load activity.

1 <div id="activityLayer"
2 style="position: absolute; right: 50px; bottom: 50px; z-index:9999;">
3
4 </div>

Example: Network activity overlay

Application Development
In this section we will cover everything about XIOS/3 Application Development and it is divided in to sections of relevance. The very
foundation of Application Development in XIOS/3 is the fact that they are XML based and that they use the MVC design pattern, which means
that an application consists of three parts; the UI, the Logic and the Data and that these are kept separate. This design pattern makes
development more efficient while simplifying parallel development where developers may work separately on the different parts of the
application.

What this section covers
This section covers the foundations of XIOS/3 Application Development and introduce the MVC design model.

This section also covers an explanation to the Application Package, which is explained in detail with examples. The concept of Application
Package allows the files to be bundled in to an application package, and then treated as that by the XIOS/3 system.

The final chapter is devoted to application examples. A section that will be updated continuously with more examples by XIOS/3.

The MVC Design
XIOS/3 is designed with the MVC (Model/View/Control) design model in mind. The user interface, the data and the logic of a component are
defined in separate files, all using XML.

The idea behind the MVC design is to separate data (the model) from the user interface (the view). An intermediate layer (the control), the
code or programming is responsible for the logic and links together the data and the user interface. This design simplifies updating of the
system. It also enables the use of, for example, one component's logic in another component or having multiple views of the same
application.

The model
The model is described in standard XML and is the data that gives the graphical component information. This information is presented to the
end-user as text, numbers, pictures or other informative data.

The view
The view is described in XIOS/3 UI XML and presents the interface, creating an application view containing graphical components. Each
component is described in XML as an element, similar to the way a HTML tag describes a graphical widget for a website.

The control
The control is described in XIOS/3 process XML and is an abstract way of programming. It is the application logic - an intermediate layer
connecting the model and the view.

The process XML consists of a number of steps, and typically execution starts on step 1. A step consists of operations changing application
states, application user interactions or data storage to the server. Most steps are invoked by something called a trigger.

A trigger is an event caused by user interface components invoked when the end-user interacts with the application, for example using the
keyboard or mouse. The XIOS/3 system sometimes invokes system events that can be connected to a trigger as event types.

Structure
This section explains what a XIOS/3 application consists of and briefly explains XML syntax. The latter is very important since XIOS/3
applications are built using XML and we have therefore compiled a short list of restrictions and a basic syntax of XML.

In order to develop XIOS/3 applications you also need to understand the application MVC design model, be familiar with the application
package structure. How an application structure works will be explained in the section Creating and packaging applications.

An application consists of at least one application view, but can have any amount of views. A view is a window or popup part of an application.

This section will conclude with a simple example application consisting of one view managing a list of books.

The three elements of the MVC design are always divided in to different files, separating the model, view and control from each other. Next,
we will explain how to define and work with the model to build XIOS/3 application views and make the application come alive.

XML Syntax and Restrictions
The XML syntax is very easy and logical. These XML restrictions apply to all XML languages, such as XML, XSLT, XHTML, UI XML and Process
XML. The following rules and restrictions apply to all XML languages.

Every XML document must have a XML processing instruction.
Every XML document must have a root element.
An element name must never start with the word XML.
XML is case sensitive, there is a difference between <a> and <A>.
Only empty elements should be self-closing.
All attributes should be places inside double or single attributes. They can however not be used at the same time.
Elements may not overlap each other.

The last rule which states that elements must not overlap each other means that; if B is the child element of A then B must be closed before A
and never after else wise they would overlap each other.

XIOS/3 Developer Manual - 2022-06-09 9/164

1 <?xml version="1.0"?>
2 <element attribute="A" attribute2="100">
3 <childElement value="1"/>
4 <childElement value="2"/>
5 <childElement>No Value</childElement>
6 </element>

Example: Basic XML Syntax

Data XML (Model)
The data XML has no restrictions on element structure except that it must be well-formed XML. The data XML can be structured in several
files; these can be static - or dynamically generated files requested from the server via the client web browser.

1 <?xml version="1.0"?>
2 <documentRootName>
3 <!-- Put XML document elements here -->
4 </documentRootName>

Example: Data XML basic structure

UI XML (View)
The UI XML describes an application view structure containing layout elements and graphical components. All of these are elements in the UI
XML, with names corresponding to the names of the respective application view or components.

This section will only cover the UI XML language in brief. A more detailed explanation of element restrictions, required and optional attributes
and other related application configuration can be found in the section on UI Development and in the Component Reference section.

1 <?xml version="1.0"?>
2 <view name="[name]" version="[version]" icon="[path]">
3 <panel name="[name]" width="auto">
4 <!-- Put application view panels and components here -->
5 </panel>
6 </view>

Example: Basic XIOS/3 application view structure in a UI XML file

View element
The application view UI XML must have a View root element. The element must specify the name and version attributes. The name attribute
must be a unique name identifier and the version attribute must specify the version of the UI components to be used.

Panel elements
To describe the application view layout, a single top-level panel element must be placed inside the view element. The container panel can
contain any amount or structure of panel layout elements or component elements.

Component elements
The component elements are the actual visual building blocks placed inside the view layout panels. They visualize the common components of
almost any modern application, GUI library or internet related system. For example list, tree, menu and toolbar components are widely used in
XIOS/3 applications.

Process XML (Control)
The Process XML describes the application logic execution steps and the panel element operations performing the actual programming
actions for each step. The operations let you control the application; you could compare operations to functions in traditional programming
languages.

This section will only cover the Process XML language in brief. A more detailed explanation of element restrictions, required and optional
attributes and any other related application logic programming can be found in the section on Process Development and in the Process
Operations Reference Manual.

1 <?xml version="1.0"?>
2 <process name="[name]" version="[version]">
3 <!-- Put your triggers here -->
4 <trigger view="[name]" component="[name]" event="[type]" step="[unique identifier]"/>
5
6 <!-- Put your steps here -->
7 <step id="[unique identifier]" name="[name]">
8 <!-- Put your operation code here -->
9 </step>

10 </process>

Example: Basic XIOS/3 process structure in a process XML file

Process root element
The process XML must have a process root element. The element must specify the name and version attributes. The name attribute must be a
unique name identifier and the version attribute specify the version of the process language to use.

Trigger element
At the top of the process XML you will find trigger elements. A trigger is an event caused by user interface components invoked when the end-
user interacts with the application, for example using the keyboard or mouse. A trigger can also be invoked by actions performed by the
XIOS/3 system. Triggers initiate at a specific step and start executing operation.

The trigger elements have to specify:

view attribute, referring to the application view to which the trigger is mapped
component attribute, referring to the GUI component to which it is mapped
event attribute: the component or system event type to get triggered
step attribute: the step to handle the event triggered

Step element

XIOS/3 Developer Manual - 2022-06-09 10/164

Step elements follow the trigger elements. They provide instructions on what should occur when the trigger has been invoked. The step
element may contain any amount of alias elements or operation elements. A step can continue executing operations in another step by
specifying a goto attribute with the number of the next step as value. Movement to another step will take place when all operations in the first
step have been executed.

The step elements have to specify:

id attribute holding the identifier of the step
name attribute specifying a unique name of a step

Alias element
An alias is a variable (global or local) in the process XML file and will exist as long as the process is running. The alias can hold text, numbers
or a document reference. Using aliases for document references makes reuse of references efficient, because there is no need to type the
entire path every time a document must be accessed. If you want to use a reference to an alias, put a $ sign before the alias name.

Operation element
The operations are the actual programming logic and make the GUI come alive through end-user interactions. The process XML operations
may remind you of method calls invoked on the components, symbolizing classes or objects in other programming languages.

Introducing the XIOS/3 Filesystem
The XIOS/3 filesystem is a filesystem abstraction for local and remote document storage and services. The filesystem abstraction provides
generic methods to work with data stored in a wide range of different systems. Note that all operations are not available on all filesystem
backends, but depends on the inherent constraints and functionality of the underlaying storage as well as the feature set of the protocol
module that communicates with the storage.

Many of the system functions and applications in XIOS/3 assume that the default filesystem is named "home://". There is however no
requirement that any filesystem is mounted in XIOS/3.

After reading this section you should have basic understanding how file types in XIOS/3 work and how to associate file types while also
knowing that there are existing file types and where they are located.

We will also provide you with a overlook of file properties and system permissions. These are intended to educate the reader of available file
properties set by the system such as when the file was created as well as settings or limiting permissions to files by making them read-only
for other users. Again this is intended to give the reader an introduction to the filesystem and does not offer any code examples. These can
instead be located in the "Using the XIOS/3 Filesystem" section.

This section also introduces the three different actions that can be performed on files, open, edit and preview. These can be found in the
"Performing Actions" section.

File Properties
All files have their meta data exposed through the virtual ".meta" document in the filesystem. In the filesystem the actual file is treated as a
directory in which the ".meta" file can be found. For example the file "public.xml" has its meta data file readable at "public.xml/.meta". The
contents of the meta data file is conforming to the W3C Atom metadata syndication format.

The properties below are available as attributes in the meta data XML listing of a file.

Created
The creation time of a file is available in the atom:published element of the metadata document. The text content will be a timestamp in the
format of YYYY-MM-DDThh:mm:ssZ, e.g. 2019-01-17T13:25:57Z.

Modified
The time of last modification is abailable in the atom:updated element of the metadata document. The text content will be a timestamp in the
format of YYYY-MM-DDThh:mm:ssZ, e.g. 2019-01-17T13:25:57Z.

System Permissions
The XIOS/3 system offers file permission handling for local files as well as a user/group permissions for the Group functionality.

Group permissions
Each group can have three general permission levels (customized roles are covered in the Managing groups section). The general roles are
Owner, Administrator and Member which all have predefined access rights in the group.

The owner is a super-user that have full rights across the system. Usually the owner is the creator of the group. Furthermore the owner is also
the only user that can promote and demote users to become administrators. These have mroe access rights than normal users in the group.
Administrators role is created automatically when the group is created.

Normal members have access to the filesystem but can't create or delete files without the owner or admin setting special permissions for files
or folders. Observe that files inherit the rights of the folders, if they do not have their own rights defined.

Additional
Files created in XIOS/3 can handle basic read, write and delete permissions. This can be done by modifying the meta data of the file in
question. These permissions can also be changed using Process XML.

Performing Actions
Actions can be performed on files which are handled by operation open. Information regarding which application should be used to perform a
specific action on a file is set in the settings.xml file.

All file types can be either opened, edited or previewed. Due to the fact that XML files can be defined in many different ways these actions can
be used to sort them out and open different applications for different XML files.

Open
The open actions handles which application should be used to open the file. It actually works by mime-type and root element of the file. In
order to open an XML file with a specific application the file type must be defined in settings.xml else it will open in the default application for
XML files, Notepad.

Edit
This option refers to which application should handle the editing process of the file. Many times this would be the same application that is
used to open the file. There are however exceptions such as View XML and Process XML files or any files that are meant be edited by an editor

XIOS/3 Developer Manual - 2022-06-09 11/164

while displayed in a completely different way.

Preview
This action is also optional and is used as a third option of opening a file.

Using the XIOS/3 Filesystem
This section of the documentation contains information about the XIOS/3 filesystem.

In the chapter Overall Structure we explain how the filesystem works and of what it consists of.

Managing the filesystem using Process XML to handle Files, Folders and Groups is covered extensively with several examples provided. The
final chapter covers how to perform searches in the filesystem.

Overall Structure
The XIOS/3 filesystem utilizes XML for communication. Every folder content request is returned as an atom feed which is similar to an RSS-
atom feed that websites use to syndicate news on websites. In the application Document Explorer this atom feed can be visualized in several
different ways.

In this section we will more closely explain how the different components of the filesystem function.

Files
All files are stored on the server that the protocol module connects to. Upload is possible via either the Document Explorer or by using a an
alias (model open).

In folder listings and search queries each file is presented as an atom:entry in an atom:feed. In this atom:entry element you are provided with
the location of the file, MIME-type and other file specific information.

To learn more about how to use atom feeds read the Managing Files chapter. Information about how search queries work can be found the
Searching the Filesystem chapter.

Folders
All folders are virtual and the entire folder structure is stored in the file folders.xml. It is this file that is used to render the folder structure in
applications such as the Document Explorer.

In XIOS/3 folders use the fs namespace. This means that this namespace must be declared in any file that is used to modify file structure or
display it.

Shortcuts
A user can create a shortcut to any file by right-clicking on a file and selecting the "Add shortcut to desktop"-option in the context menu. Any
user can also right-click directly on the desktop to create a "shortcut" or an "iLauncher Shortcut". The latter is used for external application or
mail services. The "shortcut" option requires a Path to the application file and can also be provided a parameter in the form of a trigger.

XIOS/3 also supports folder shortcuts; this is done by pointing the shortcut to a folder and ending the destination URL with a slash like such:

home://Documents/

The final slash is very important as it indicates if it is a file or a folder.

The shortcut functionality works by adding a atom:entry to the settings.xml file. Observe that the atom namespace is used.

Groups
Groups are a special feature in XIOS/3 where, when supported by the uderlying filesystem, a group is represented with a separate file system
where documents can be shared within that group.

More information about creating and managing groups can be found in the Managing Groups chapter of this section.

Managing Files
This chapter is intended to provide the reader with the knowledge how the XIOS/3 filesystem handles files and how to create, edit and delete
files by altering the atom feed.

Name Convention

The following characters are forbidden to use in file names:

? / \ () # * : [] | % & " ' ! { }

Creating files
Files are created by appending an atom:entry element to an atom:feed. The feed is retrieved when making a folder listing or query in a
specific folder. To append the XML data we must use the change operation.

Creating a file

1 <operation name="filesystem" value="home://Documents/">
2 <create type="file" name="MyNewDocument.xml">
3 <author>
4 <name>Alice Wonder</name>
5 <email>alice@wonderland.com</email>
6 <uri></uri>
7 </author>
8 <summary></summary>
9 <acl>

10 <user id="101" read="true" write="true" delete="false" changeACL="false"/>
11 </acl>
12 <index>
13 <key name="keywords" index="true"></key> <!-- will be indexed as dc:keywords -->
14 <key name="site" index="false"></key> <!-- will be indexed as ni:site -->
15 </index>
16 <content type="text/xml">
17 <newConent>My New File...</newConent>
18 </content>
19 </create>
20 </operation>

Example: The operation will create a new document called MyNewDocument.xml in the Documents folder.

XIOS/3 Developer Manual - 2022-06-09 12/164

The above Process XML code will use the filesystem operation to save a document named "MyNewDocument.xml" in the "home://Documents/"
folder.

Using this operation you can easy create a file, set the content, set the permissions rights and set the meta data (atom, dc and ni). In the
author element which corresponds to the atom:author element we populate the child element's name, email and uri which will then be
available as atom:name, atom:email and atom:uri as meta data. The same is true for the summary element which will be available as
atom:summary in the meta data.

The acl element contains the permission rights for the file. You can add either user or group elements and give them specific rights. You can
define the read, write and delete rights but also the right to change the ACL information.

The index element defines the meta data keys (dc: and ni:). If you set the index attribute on the key element to true the keyword will be
available as dc:keyword and will also be searchable when searching the filesystem. The ni: meta data is not searchable.

Finally the content element which allows you to directly define the contents of the file by adding it inside the element. The type attribute on
the content element will define the content-type (mime-type) in the meta data.

The file created
The above code will generate a file called MyNewDocument.xml in the Documents folder (home://Documents). When opened the file should
look like this.

Observe that when trying to rename a file to one name that is already being used by another file it will result in a system dialog notifying the
end-user that there already is a filename with that name. Also observe that a file cannot be named exactly as a folder in the same directory.

1 <?xml version="1.0"?>
2 <newConent>My New File...</newConent>

Example: MyNewDocument.xml in home://Documents/

Handling file rights (file permissions)
File rights are appended to a file when it is created (see above) or by changing exiting file permissions. The acl element can have either user
or group child elements. Both of these have id, read, write, delete and changeACL attributes which are used to define permissions.

The code below will give the a user with the id 20013 full permission for the file as well as changing the file rights (changeACL attribute). It
also provides read access for all members of the group which has id 410. The members cannot write anything in the file or delete it.

1 <acl>
2 <user id="20013" read="1" write="1" delete="1" changeACL="1"/>
3 <group id="410" read="1" write="0" delete="0" changeACL="0"/>
4 </acl>

Meta Data
Meta Data is descriptive data about a file and its content. In XIOS/3 file meta data is appended as child elements to the atom:entry element.
These child elements utilize three different namespaces; atom, dc and ni.

The atom-namespace is a W3C standard namespace which has predefined elements. These will be indexed and are searchable when making
queries from the file server.

The other two namespaces are XIOS/3 namespaces. The dc-namespace (directory) is used to create meta data that should be indexed, and
therefore searchable. The ni-namespace (no index) is used to create meta data that will not be indexed and will not be searchable when
making server queries.

Developers can create and store their own meta data elements using the dc: and ni: namespaces. There are limitations to what the meta data
field can be named. The local-name of the atom:, dc: and ni: elements must be unique and because the elements using the atom-namespace
are reserved that means that dc:title or ni:title can't be used. The reason why the elements must have unique names is when making search
queries the namespace is omitted.

A list of reserved element names using the atom-namespace can be found in the atom namespace dictionary entry.

The Shell application (or rather the shell component) has a command named "meta" that lists all meta data entries of a file. In the example
below we will list all meta data of the Wallpapers.xml file.

meta home://Wallpapers.xml

Accessing meta data of a file
There are two different ways of accessing meta data of a file. The first is to create a file listing by searching for a file in a particular folder,
thus generating an atom feed containing only one atom:entry element. In this case we will receive the meta data as atom, dc or ni
namespaced elements.

The second way is to access the meta data for a specific file which is possible if the file path is known. In order to get the meta data we write
the entire URL followed by a slash, like such:

home://Folder/folder/

The code below is the returned XML for Wallpapers.xml

1 <meta name="Wallpapers.xml" created="2019-01-28T11:42:10Z" href="http://os.xcerion.com/v1/5910/452165/1" src="home://Wallpapers.xml"
2 size="89" mime="text/xml" schema="">
3 <index>
4 <key name="link" source="user">Wallpapers.xml</key>
5 <key name="published" source="user">2019-01-28T11:42:10Z</key>
6 <key name="updated" source="user">2019-01-28T11:42:10Z</key>
7 <key name="id" source="user">mid:485@xios.xcerion.com</key>
8 <key name="folder" source="user">5910</key>
9 <key name="document" source="user">452165</key>

10 <key name="content" source="user"></key>
11 </index>
12 <noIndex>
13 <key name="root" source="user">wallpapers</key>
14 </noIndex>
15 <access tag="475d55G81-s23ssD">
16 <user id="181" read="1" write="1" delete="1" changeACL="1"/>
17 </access>
18 <attachment>
19 <document name="Wallpapers.xml" id="1" mime="text/xml" created="2019-01-28T11:42:10Z" modified="2019-01-28T11:42:10Z"/>
20 </attachment>
21 </meta>

The code above is returned when using an URL similar to one in the debug operation below. The XML of the meta data is divided in to indexed
meta and non-index meta data. These are presented as dc and ni namespaces in file listings. The access element contains information
regarding which user can edit the file, in this case only one user.

XIOS/3 Developer Manual - 2022-06-09 13/164

1 <operation name="debug" value="home://Wallpapers.xml/">alert:plain</operation>

Changing meta data to a file

1 <operation name="change" value="home://Documents/">
2 <store type="change" select="/atom:feed/atom:entry[atom:title='DocTestFile.xml']">
3 <atom:title>Changed title</atom:title>
4 </store>
5 </operation>

Example: Example of meta data

As mentioned earlier only meta data using the atom and dc namespaces are indexed and are searchable. For the example above you will be
able to search for atom:title, atom:author and dc:fkeywords. To understand how searches are made read the "Searching the Filesystem"
chapter.

The ni:developer will not be indexed and you will not be able to search for that information. You can however use it when it is available in
atom:entry.

The name of the file created will be DocTestFile.xml and it will be created in home://Documents folder. The only contents of the file will be a
single element (<document/>)

Attachments
XIOS/3 allows for XML documents to be attached to other documents. Currently only XML documents can be attached. This is accomplished by
adding information to the meta XML of the file which the attachments will be a part of.

Because the meta data is available as XML data we use the change operation to append our attachment. In the value attribute we provide the
meta data of the file taht we want to append the attachment to. This is done by adding one additional forward slash (/) to the file path.

All attachments of the file will be available in the attachments element as document elements. Note that there already exists one attachment
with the id 1, which is the file itself. The id attribute is a positive integer, which means that the value must be a number higher than 0.
Because the 1 is already in use the attachment can thus be 2 or higher.

When creating an attachment with an id that already exists it will overwrite any attachment that exist with the same id. It is important to
understand that attachment cannot have meta data appended to them since they are only part of a document.

1 <operation name="change" value="home://file.xml/">
2 <store type="append" select="/meta/attachment">
3 <document name="My attachment" id="2"/>
4 </store>
5 </operation>

Example: This will create an empty attachment to the document 'file.xml' and will have the name 'My attachment' and the id 2.

The attached file can be accessed by adding a forward slash and then the id within brackets like such:

home://file.xml/[2]

As you can guess this means that the original file can be accessed in one of two ways:

1. home://file.xml
2. home://file.xml/[1]

File listings
File listings are created every time you ask for the contents of a virtual folder and returned from the server in the form of an XML atom feed.
File listing are also created when making a search query.

A folder listing looks as a normal folder path with an slash at the end of the Path. If the slash is omitted the Path will just be a string. When a
slash is used it will return XML.

URL Description Result
home://Documents Path to folder string value
home://Documents/ file listing of folder contents XML data

The atom:feed below is an example of a feed returned when asking for the contents of the folder home://. The root element is the atom:feed
and notice the atom:, os:, dc: and ni: namespace declarations.

The os-namespaced elements at the top of the feed contain the number of search results. It is also for paginating when this is supported.

All files are listed as atom:entry node-sets. The feed below has lists three atom:entry node-sets and therefore three files. Each entry contains
details about the file, such as filename (atom:title), when it was published and in what folder it is located.

1 <?xml version="1.0"?>
2 <atom:feed xmlns:atom="http://www.w3.org/2005/Atom" xmlns:os="http://a9.com/-/spec/opensearch/1.1/"
3 xmlns:dc="http://xcerion.com/directory.xsd" xmlns:ni="http://xcerion.com/noindex.xsd">
4 <os:totalResults>3</os:totalResults>
5 <os:startIndex>0</os:startIndex>
6 <os:itemsPerPage>100</os:itemsPerPage>
7
8 <atom:entry>
9 <atom:title>Wallpapers.xml</atom:title>

10 <atom:published>2019-01-28T11:42:10Z</atom:published>
11 <atom:updated>2019-01-28T11:42:10Z</atom:updated>
12 <atom:link rel="alternate" type="text/xml" href="http://os.xcerion.com/v1/documents/5910/20086/1" length="89"/>
13 <atom:id>mid:719e@xios.xcerion.com</atom:id>
14 <dc:folder>5910</dc:folder>
15 <dc:document>20086</dc:document>
16 <dc:root>wallpapers</dc:root>
17 <atom:content type="text/xml" src="home://Wallpapers.xml"/>
18 </atom:entry>
19
20 <atom:entry>
21 <atom:title>folders.xml</atom:title>
22 <atom:published>2007-08-30T06:51:10Z</atom:published>
23 <atom:updated>2007-08-30T06:51:10Z</atom:updated>
24 <atom:link rel="alternate" type="application/xml" href="http://os.xcerion.com/v1/documents/5910/12480/1" length="0"/>
25 <atom:id>mid:5c8@xios.xcerion.com</atom:id>
26 <dc:folder>5910</dc:folder>
27 <dc:document>12480</dc:document>
28 <atom:content type="application/xml" src="home://folders.xml"/>
29 </atom:entry>
30
31 </atom:feed>

XIOS/3 Developer Manual - 2022-06-09 14/164

Example: File listing in home://

Renaming files
To rename a file using the process XML language all you need to do is to use to change operation to replace the old atom:title element with a
new containing the new filename.

Observe that two files can't have the same name in a folder. If you try to rename the file to a file which already exists a system dialog
notifying the end-user that the filename is in use will appear.

1 <operation name="change" value="home://Documents/?title:DocTestFile.xml">
2 <store type="replace" select="/atom:feed/atom:entry/atom:title">
3 <atom:title>AnotherName.xml</atom:title>
4 </store>
5 </operation>

Example: Creating a file in home://Documents/

The example above makes a search query to the server for a file named DocTestFile.xml that should be located inside home://Documents/. It
will return a atom:feed XML document. To better understand search queries, read the "Searching the Filesystem" chapter.

The feed returned will only contain one atom:entry since there can only be one file that is named DocTextFile.xml. We proceed to select the
atom:title in the only atom:entry and replacing it with our new atom:title containing the text AnotherName.xml which will be the new name of
our file.

Deleting files
To delete a file we need to remove it from the atom:feed. The example below will use the change operation and the child element delete to
select a file named DocTestFile.xml and delete it.

Deleting file that do not exist does not create a system dialog notifying the end-user of the failure to remove it. It will only appear as a error
message in the debugger, saying that the XPath way faulty and that it did not match anything.

1 <operation name="filesystem" value="home://Documents/DocTestFile.xml">
2 <delete permanent="true" silent="false"/>
3 </operation>

Example: Creating a file in home://Documents/

Moving files
Moving files is a simple matter of using the filesystem operation.

Note: The path to the targetFolder must end with a slash.

1 <operation name="filesystem" value="home://Documents/DocTestFile.xml">
2 <move to="home://Applications/" silent="true"/>
3 </operation>

Example: Moving a file to a new directory

Copying files
Observe that this will both copy and paste the file in the same folder. To work as default copy-paste it need to be broken up to two
operations; "copy" to copy the filepath (targetFile) but you will also need to retrieve a target folder using alias model="folder".

Note: The path to the targetFolder must end with a slash.

1 <operation name="filesystem" value="home://Documents/DocTestFile.xml">
2 <copy to="home://Copies/"/>
3 </operation>

Example: This will actually copy the file and rename it so that there is no name conflict

Uploading files
Uploading of files is done by using the filesystem operation.

1 <operation name="filesystem">
2 <upload to="home://Documents/"/>
3 </operation>

Example: This will open a dialog window that will enable the user to upload a file in the Documents folder

Managing Folders
This chapter is intended to provide the reader with the knowledge to manage XIOS/3 folders. Working with folders means to work with
folders.xml, a file created by the server which lists all your folders. The file not an actual file and can therefore not be removed.

To open you own folder.xml open the Shell application and type in the following:

xmlpad home://folders.xml

Note that all groups also have a folders.xml which is located in the folder root. This file is accessible to all group members.

home://folders.xml
In the folders.xml there is only one element, the fs:folder. Each folder-element can contain one or several folder-elements. Together they form
a folder structure.

Each folder element has a id attribute, which is set by the server when the file is created and one name attribute which is given to the
element when the folder is created.

This file utilizes the fs namespace and therefore such a declaration must be in any file that handles folder data.

Name Type Values Description
id numerical [0...n] server ID of folder

XIOS/3 Developer Manual - 2022-06-09 15/164

name string Any string value Name of the folder

listview string URL Specific XSL renderer for folder
path string path Specifies the absolute path to the

folder

1 <?xml version="1.0"?>
2 <fs:folder id="590" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:fs="http://xcerion.com/folders.xsd">
3 <fs:folder id="592" name="Documents">
4 <fs:folder id="2250" name="Pictures"></fs:folder>
5 </fs:folder>
6 <fs:folder id="602" name="Applications">
7 <fs:folder id="4097" name="Booklist">
8 <fs:folder id="4098" name="views"></fs:folder>
9 <fs:folder id="4099" name="processes"></fs:folder>

10 <fs:folder id="4100" name="data"></fs:folder>
11 <fs:folder id="4101" name="layout"></fs:folder>
12 <fs:folder id="4102" name="images"></fs:folder>
13 </fs:folder>
14 <fs:folder id="598" name="Trashcan" system="trashcan"></fs:folder>
15 <fs:folder id="599" name="Groups" listview="apps/system/listviews/groups.xsl"></fs:folder>
16 </fs:folder>
17 </fs:folder>

Creating folders
Folder are created by appending fs:folder-elements to the folders.xml document.

In our example below we define two aliases. The first, folderDoc, will contain the XML data stored in the folders.xml file. The second alias,
folderName, contains the name of the folder which we wish to remove.

Name Convention

The following characters are forbidden to use in folder names:

? / \ () # * : [] | % & " ' ! { }

We use the change operation change operation on the data in the alias folderDoc to append one fs:folder to the root element (/fs:folder[1]).
The name of the new folder will be "My New Folder" just as we defined it in the alias folderName.

1 <alias name="folderDoc" value="home://folders.xml" model="data"/>
2 <alias name="folderName" value="My New Folder" model="value"/>
3
4 <operation name="change" value="$folderDoc">
5 <store type="append" select="/fs:folder[1]">
6 <fs:folder name="{$folderName}"/>
7 </store>
8 </operation>

Handling folder rights
Folder rights can also be appended to a certain folder when it is created. By adding an access node-set as a child element of the fs:folder that
we are trying to create we can define permissions. It is also possible to set permission rights on files. The access element can have either user
or group child elements. Both of these have id, read, write, delete and changeACL attributes which are used to define permissions.

The code below will give the a user with the id 20013 full permission for the file as well as changing the file rights (changeACL attribute). It
also provides read access for all members of the group which has id 410. The members cannot create or delete files in the folder just read the
files. The changeACL attribute for the group element is set to 0 which stops the group users from changing the permission rights.

1 <operation name="change" value="home://folders.xml">
2 <store type="append" select="/fs:folder">
3 <fs:folder name="data">
4 <acl>
5 <group id="{$adminGroup}" read="true" write="true" delete="true" changeACL="true"/>
6 <group id="{$userGroup}" read="true" write="false" delete="false" changeACL="false"/>
7 </acl>
8 </fs:folder>
9 </store>

10 </operation>

Editing folders
There are restrictions to how folders can be edited. The id attribute which is used to identify the folder and the system attribute (which only
exist on certain system folders) can never be changed. Thus the name attribute is used to rename folders.

The example below illustrates how to rename a folder named "New Folder" to "myFolder" by replacing the name attribute.

1 <alias name="oldName" value="New Folder" model="value"/>
2 <alias name="newName" value="myFolder" model="value"/>
3
4 <operation name="change" value="$folderDoc">
5 <store type="replaceText" select="/fs:folder[1]/fs:folder[@name='{$oldName}']/@name">{$newName}</store>
6 </operation>

Deleting folders
Folder are deleted by removing their fs:folder-element from the folder.xml data.

In our example below we define two aliases. The first, folderDoc, will contain the XML data stored in the folders.xml file. The second alias,
folderName, contains the name of the folder which we wish to remove.

We proceed to use the change operation to delete the fs:folder-element in the root that matches the XPath expression provided in the select
attribute. This means that it will try to delete a folder named "My New Folder" that is located inside the root folder.

1 <alias name="folderDoc" value="home://folders.xml" model="data"/>
2 <alias name="folderName" value="My New Folder" model="value"/>
3
4 <operation name="change" value="$folderDoc">
5 <delete select="/fs:folder[1]/fs:folder[@name='{$folderName}']"/>
6 </operation>

XIOS/3 Developer Manual - 2022-06-09 16/164

Moving folders
Moving folders is currently not supported.

Copying folders
Copying folders is currently not supported

Searching folders
The Process XML language allows you to search folders by making queries to the server. You can only search in one folder at the time. To
learn how to make searches in folders read the "Searching the Filesystem" chapter.

Managing Groups
This chapter is intended to provide the reader with the knowledge to manage and understand the Groups functionality offered in XIOS/3.

Groups are a special feature in XIOS/3 that allows several individuals to share a common virtual disk. There exists two types of groups, public
and private. Anyone can access the virtual disk of a public group, but to be able to gain access to the files of a private group one must join the
group and then login to (mount) the group. Once the login processes is completed the group will appear as a virtual disk in the Document
Explorer as groupname:// and it will also be available throughout the system.

Group actions, such as joining, leaving and creating groups are available in the Process XML language and the Shell Application. To facilitate
this functionality will also be available in Document Explorer and in time other system applications. The applications utilize the Process XML
functionality while the Shell Applications has special built in features as it is a component.

Listing Groups and subGroups
A list of of all available groups (hidden groups are not listed) is available to all users in the

Listing of all groups

home://Groups/

Creating Groups
By creating a group you reserve that specific group name and the creator becomes the owner of the group. The owner has full rights to the
group, including creating additional user groups and to appoint users to "Administrators" which can utilize functionality that ordinary
members cannot.

A group can be created in any of the following ways:

Using Process XML

ActionURL syntax:

1 [channel name]://createGroup([groupName], [owner alias])

Example:

1 <operation name="open" value="home://createGroup(Jennys Group , Jenny)"/>

Using Shell

To perform the same action in the Shell application you write one of the following commands:

groups -n "Jennys Group" Jenny
type createGroup(Jennys Group , Jenny)

Document Explorer

Open the Document Explorer application and select the Group folder. A list of groups should be displayed. If you right-click on a group icon a
context-menu with option to that specific group will appear. If you right-click outside a group you should instead get a menu with the option
"Create New Group"

Once you have chosen that option a new window will appear notifying you of the need to select a name for your group and your desired
username (alias) in the group. Observe that you may not take a group name that has already been chosen.

If you try to register a group that already exists a system dialog will appear notifying you that the intended registration failed because it
already exists.

If the group name is available and your registration was successful a system dialog should appear stating that the group was created. Your
group is now available at the last group in the Groups folder.

Creating subGroups
The default setting for groups is that they support subgroups. This means that groups can be created within those groups and are considered
to be subGroups. Creation of subgroups can be denied by the group owner. In order to create a subgroup the parent group (top level group)
must be mounted.

Subgroups are created by any of the following ways:

Using Process XML

ActionURL syntax:

1 [channel name]://createGroup([groupName], [owner alias])

Example:

1 <operation name="open" value="xidezone://createGroup(Jennys Group , Jenny)"/>

Using Shell

To perform the same action in the Shell application you write one of the following commands:
XIOS/3 Developer Manual - 2022-06-09 17/164

xidezone://> groups -n "Jennys Group" Jenny xidezone
xidezone://> type createGroup(Jennys Group , Jenny)

Using Document Explorer

This action is currently not supported in Document Explorer.

Joining Groups
Groups can be joined by any of the following ways:

Using Process XML

ActionURL syntax:

1 [channel name]://join([group Path], [user alias])

Example:

1 <operation name="open" value="home://join(Jennys Group, Kirk Smith)"/>

Using Shell

type join(Jennys Group, Kirk Smith)
groups -j "Jennys Group" "Kirk Smith"

Using Document Explorer

In the Groups folder right-click on a group and select the "Join Group" option from the context-menu

Leaving Groups
Members can choose to leave a group at any time. Observe that group owners can't leave their groups.

Using Process XML

ActionURL syntax:

1 [channel name]://leaveGroup([group Path])

Example:

1 <operation name="open" value="home://leaveGroup(Jennys Group)"/>

Using Shell

groups -q "Jennys Group"
type home://leaveGroup(Jennys Group)

Using Document Explorer

Right-click on group name and select the option "Leave Group", Observe that this option is only available if the you have not mounted the
group.

Mounting Groups
Users can login to (mount) groups by any of the following ways:

Using Process XML

ActionURL syntax:

1 <operation name="filesystem">
2 <mount name="finance">
3 <group name="Finance"/>
4 </mount>
5 </operation>

The example will mount the group Finance as finance://.

Using Shell

mount [virtual drive name] [group name]
mount finance Finance
groups -l [virtual drive name] [group name]
groups -l finance Finance

Using Document Explorer

In the Groups folder right-click on a group and select the "Login to Group" option from the context-menu.

Group members
For each user that joins a group a profile will be created inside the "Profiles" directory inside the groups shared virtual disk. The file is named
after the users alias and does not have any file extension. It is however an XML file and does only contain a self-enclosing profile-element.

The type of information should be stored in these files is public information about the user, the reason being that the file is viewable by all
members of the group. Non-public information should be stored on the users local file system (home://) where only the user can access the
information.

Observe that members can change their alias in a group at any time by using the following command in the Shell application.

[channel]://> groups -h [new alias]

XIOS/3 Developer Manual - 2022-06-09 18/164

Estimating the number of members
To estimate the number of members of a group you need to do a filelisting of file files inside the Profiles directory. While only a maximum of
100 files will be listed in the atom feed, the total number of members can be found in the os:totalResults element at the top of the feed.

A list of all members in a group can be acquired by using the following command in the Shell Application

groups -m "Jennys Group"
type home://Groups/Jennys Group/Members

Customizing Group Behavior
There are a few ways to alter or customize the behavior of groups. These include auto mounting and auto starting applications.

Auto mounting
To make a group automount it needs to be defined in the #Settings. Note that this will only work if the group has been mounted once before,
and therefore created a channel node in #Settings. All groups can be found in the "channels" element as single channel elements.

1 <operation name="change" value="#Settings">
2 <store type="replaceText" select="/settings[1]/channels[1]/channel[@path='Jennys Group']/@automount">true</store>
3 </operation>

Auto starting applications
Groups can also launch applications when mounted. These can then utilize the groups shared virtual disk. This is possible by using an
autostart.xml file which is placed in the groups root folder.

The autostart.xml is an process XML file that might look like this:

1 <?xml version="1.0"?>
2 <process name="jennysAutostart" xmlns:xpc="http://xcerion.com/process/1.0" xpc:ns="http://xcerion.com/process/1.0">
3 <step id="1" name="Open Application">
4 <operation name="open" value="apps/JennyApp.xml"/>
5 </step>
6 </process>

The code above will simply open a file located at "apps/JennyApp.xml". Observe that since this application uses the shared virtual disk it does
require that the user has mounted the disk in order to work. If the group is not mounted the application will not appear correctly.

Role handling
All commands for role handling are currently handled through the Shell application. If the channel is xios then a group name must be
provided. If the channel is the group then no group name should be provided.

Listing roles

Lists all available roles in a group. Excluding owner group and admin group.

groups [group name] -o

Creating roles

Creates a new role for the group.

groups [group name] -c [role name]

Adding role members

Promotes the member to a certain group. Note that the user id must be known.

groups [group name] -a [role name] [user id]

Removing role members

Demotes the member from a certain group. Note that the user id must be known.

groups [group name] -r [role name] [user id]

Group profile.xml
Every group administrator can create a profile.xml document that can be placed in the root folder of the group. This document will contain
information about the group and will saved treated in a special way by the server, because it is indexed for the purpose of retrieving
information about a group using the "Properties" menu option.

1 <?xml version="1.0"?>
2 <groupDescription xmlns:xpc="http://xcerion.com/process/1.0" xpc:ns="http://xcerion.com/profiles/group/1.0">
3 <name>GroupName</name>
4 <owner>Alias of group owner</owner>
5 <icon>http://sport.com/xios/pics/icon.ico</icon>
6 <logo>http://sport.com/xios/pics/logo100x100.gif</logo>
7 <terms> The terms for joining the group</terms>
8 <shortDescription>
9 A description is that is less than 100 characters...

10 </shortDescription>
11 <fullDescription>
12 A full description of the group.
13 </fullDescription>
14 <keywords>
15 <keyword>keyword1</keyword>
16 <keyword>keyword2</keyword>
17 </keywords>
18 <userProfileTemplate>
19 <data id="userProfileField_name" caption="Name" component="input" indexed="true" required="true" value=""/>
20 <data id="userProfileField_city" caption="City" component="input" indexed="true" required="false" value=""/>
21 <data id="userProfileField_profession" caption="Profession" component="input" indexed="true" required="false" value=""/>
22 </userProfileTemplate>
23 </groupDescription>

Example: profile.xml document syntax

XIOS/3 Developer Manual - 2022-06-09 19/164

Managing File Types
File types are used to associate certain files to certain applications and the ability to apply custom look and graphics for that file type. They
are also used to default XIOS/3 applications such as Document Explorer, Document Selector and File selection dialogs. All file types are stored
in every users settings file and can be modified.

Creating file types
To create a file type XML data must be appended to the settings.xml, which is available as #Settings. In order to this we use the change
operation with the append type. We add a "type" element consisting of the two required attributes and two optional attribute, namespace
and element. You can read about their purpose in the "File Type Association" section.

We append a description child element that is used as a longer description of the file type and can be used for tool-tips. The open, edit and
preview element are used to define which application should be used to open the file, which should be used to edit the file (for XML files the
XML editor might be a good choice) and which file should be used to preview files.

The icon element contains an URL to the icon in 32x32 format. Read more about this in the Existing File Types section. The listview element is
used to define additional keywords which might be used to display different listviews depending of the content of this element.

1 <operation name="change" value="#TypeManager">
2 <store select="/types" type="append">
3 <type name="testXML" mime="text/xml" namespace="http://xcerion.com/doc/test" element="testElement">
4 <description>TEST XML Document</description>
5 <open>apps/desktop/noteapp.xml</open>
6 <edit>xios/apps/XMLEditor/xmleditor.xml</edit>
7 <preview></preview>
8 <icon>gui/icons/32x32/document_xml.png</icon>
9 <listviews></listviews>

10 </type>
11 </store>
12 </operation>

Editing file types
Using the file type created above we can again use the change operation to replace the text() node of the icon element with a new icon. So
instead of document_xml.png it will be document_text.png. Observe that the Document Explorer might to be reloaded for the change to take
effect. This is because XSLT files are not updated unless using the updateRedraw method.

1 <operation name="change" value="#TypeManager">
2 <store select="/types/type[@name='testXML']/icon/text()" type="replaceText">gui/icons/32x32/document_txt.png</store>
3 </operation>

Deleting file types
Deleting files types is a matter of deleting the node-set from the #Settings XML document using the change operation.

1 <operation name="change" value="#TypeManager">
2 <delete select="/types/type[@name='testXML']"/>
3 </operation>

Searching the Filesystem
This chapter is intended to explain how to perform searches and also how to filter searches. The documentation will show that the filesystem
can be used a replacement of SQL based database.

It is possible to only retrieve the number of results found, without having the server send the information. This has advantages since is results
in less bandwidth for the end-user, however the server load is the same.

Query Syntax
The query language that is used to communicate with the server is rather simple, yet if used correctly it can be very powerful. A search query
is a list of search terms separated by white-space and is presented in any of the following ways:

1. [+/-][prefix:]term[*]
2. [+/-][prefix:]'term"term term'[*]
3. [+/-][prefix:]"term'term term"[*]

The information contained in the brackets is optional. The plus and minus sign in front of the prefix is used to define if the term must or must
not exist. This is similar to "AND" and "AND NOT" in SQL. Unprefixed terms are neither plus or minus. They are instead used to increase the
weight of a result and make it more relevant.

The prefix is also optional, but highly recommended to use. It consists of the local-name of an element, meaning that the namespace should
not be used. As we mentioned in the meta data section of "Managing Files" the local-name must be unique in meta data field else wise search
will not be possible. If the prefix is omitted it will search all searchable meta data fields.

A term is often simply a word. If that is the case then apostrophes and quotation marks should not be used. If a phrase is used and it contains
white space then these must be used to enclose the search phrase. Observe that if the phrase contains quotation marks then apostrophes
should be used to enclose the term and vice versa.

To make the server return files the contains words that start with the term supplied we must append an asterisk to our term.

1. home://Documents/?+title:Acme*
2. home://Documents/?+summary:'Jenny"s Party'*
3. home://Documents/?+summary:"Jenny's Party"*

Note that we are using a slash at the end of the folder path to indicate that we want to deal with XML data. If the slash was omitted the search
will fail.

Filtering
Filtering search results is done by adding one or more search conditions. These are separated by white space. Only search results that match
all conditions will be returned.

home://Documents/?+title:Acme -title:Sales -title:Jenny

XIOS/3 Developer Manual - 2022-06-09 20/164

Special handling of atom:published, dc:startdate and dc:enddate
These meta data fields are reserved and will be handled in a special way. The atom:published which is set automatically by the server is not
indexed. Instead three separate values are indexed from the timestamp. The following date "2019-02-04" would index the following values:

pubyear:2019
pubmonth:02
pubweek:06

A search query to fetch all files created in February 2019 might look like this:

type home://Documents/?pubyear:2019 pubdate:02

The dc:startdate and dc:enddate which might be used to create appointments which span over a time period and not just a moment in time
might look like this when added as meta data:

1 <dc:startdate date="2018-12-10" time="01:54:00" zone="Z"/>
2 <dc:enddate date="2019-01-09" time="00:00:00" zone="Z"/>

It would result in a special indexing that would save the following data

year:2018
year:2019
month:12
month:01
week:50, week:51, week:52, week:01, week:02

No search results
When the server does not find any files matching the search criteria it will only return the following XML. Observe that this is the same as
when there are no files in a folder.

1 <?xml version="1.0"?>
2 <atom:feed xmlns:atom="http://www.w3.org/2005/Atom" xmlns:os="http://a9.com/-/spec/opensearch/1.1/"
3 xmlns:dc="http://xcerion.com/directory.xsd" xmlns:ni="http://xcerion.com/noindex.xsd">
4 <os:totalResults>0</os:totalResults>
5 <os:startIndex>0</os:startIndex>
6 <os:itemsPerPage>100</os:itemsPerPage>
7 </atom:feed>

Development Tools
This section of the documentation contains information about the various XIOS/3 developer tools. Currently the section is very brief but will in
time be expanded to contain external tools, third party extensions and user developed applications.

XIOS Applications
To aid developers in their development of applications XIOS/3 has developed an XML editor and a Visual IDE that will be available for all
XIOS/3 users.

XML Editor
XIOS/3 general purpose XML editor offers basic XML editing. The functionality offered here is tools needed for editing XML documents. The
application will check if the document is well formed, display line numbers as well as search and replace functionality.

The state of the automatic updates feature can be set to off which allows the user to edit documents such as #Settings but not update the
document until the users requests update. Observe that this behavior differs from the save action which can be performed at any time. More
features will be added in the future.

This application is still in development and not ready, but you can try it using the following command in Shell:

load "xios/apps/XMLEditor/xmleditorapp.xml"

This application uses the XMLEditor component which allows anyone to make their own XML editor.

Icons and Images
When developing applications you will most likely make use of images or icons for your applications. For this you can use either the icons
provided by XIOS/3 or use your own icons.

1 <image src="xios/icons/applications/16x16/about.png" width="16" height="16"/>

Example: Base server icon path

If no protocol is given, the icons will be loaded from the base server (where the top HTML page is hosted). In all other cases the icon will be
loaded through the XIOS/3 filesystem.

1 <image src="home://Documents/image.png" width="16" height="16"/>

Example: XIOS/3 file system icon path

Application Packaging
Application Packages are XML files that are used to create a virtual package, in the form of a manifest file, for all files used in your application.
This file will allow you to run multiple instances of your application and enjoy the advantages of application isolation.

The application file also allows for limiting the number of active application instances by a single end-user.

For small applications, with little code or very few files use inline application packages. When dealing with larger application when use regular
application packages. Both of these utlize application package files. However with inline application packages all the code in written directly in
one single file. When dealing with regular application packages you have an application file which only makes references to the view and
process files.

XIOS/3 Developer Manual - 2022-06-09 21/164

Storage
Application can be stored in your file XIOS/3 filesystem (home://). The applications are executed as naitive XIOS/3 software. To facilitate the
readability of your application there is a file structure that should be used which divides the different parts of the applications in to separate
folders. An application should have the following folders:

views
processes
data
layout
images

The root folder should contain the application file. In the views and processes folder all UI XML and Process XML files should be placed. The
data folder contains static data that the end-user cannot alter. The layout folder is a multi-purpose folder containing CSS files and XSLT files
used in XSLT Driven Components. Finally the images folder contains all images of any sort. Again this structure is for increased readability of
your application. Also remember to declare which files must be downloaded when the application goes in to offline-mode.

Overall Structure
There is also the possibility of writing the view and process code directly inline inside the application file. This way of developing has great
advantages when writing small apps or widgets and will reduce the number of server requests and thus make your application load faster.

An additional feature gained from using the manifest file is the possibility is use the application in a offline-mode. This is a planned feature;
but applications can be adapted today.

Explaining Xlink
In the application package concept xlink is frequently used. Xlink is a W3C standard that allows you create and describe links to other XML
documents. This is very important as it make it possible to load file when they are needed making your applications faster.

Every xlink document has three attributes; xlink:type, xlink:actuate and xlink:href. They all use the xlink-namespace which is the following URI
http://www.w3.org/1999/xlink. the xlink:type attribute can be set as either simple or extended. In XIOS/3 only xlink:type="simple" is used.

The xlink:actuate attribute is also of the type enumeration and can be set to either onRequest or onLoad. Controls when the link will be
executed. xlink:actuate="onLoad" means that the link/file will load when the application package is loaded while xlink:actuate="onRequest"
means that it is loaded when the file is requested within the application.

NOTE: The onLoad option does not trigger the Opened events for views.

The final attribute xlink:href is the URL of the file that you want to load.

Element: application
The application element is the root element of application package files.

Required attributes

Name Type Values Description
name string unique name The name of the application.
icon string URL The icon of the application
instances integer 0, [1...n] The number of instances that

should be allowed
xmlns:xlink string http://www.w3.org/1999/xlink The URI of the xlink namespace

Element: share
If the application should be abled to be sharable across user's. Meaning if the Share Window feature (GBC - Gesture Based Collaboration) can
be used for the application.

Since Window Sharing is enabled by default, you don't need to define it. However in order to disable the feature you need to set the text()
node value to "false". This might be needed in some application that are intended for a single user, deals with sentitive information or where
the results depends on which user is viewing the application (ie #Friends data document will differ from user to user).

1 <application...>
2 <share>false</share>
3 ...

Example: Disabling window sharing

Element: settings
Here we define the application settings.

Required attributes

None available.

Child Element: path
Contains information about from which virtual drive the application will be executed. Usually this is home://, however when using groups the
path might be the groups virtual drive.

Child Element: home
Can contain the URL to the XIOS/3 folder where tile files of the application are stored. The contents of this file are available as the system alias
$home when defined. The result will be a file listing of the folder contents.

Child Element: localedir
The location of the folder which contains the localization files, allowing the application to be translated to another language.

Element: about
Here we define information about the application that will be displayed inside the control panel.

Required attributes

Name Type Values Description

XIOS/3 Developer Manual - 2022-06-09 22/164

http://www.w3.org

loader boolean false, true Decides is a loader should be
shown while the application is
loading

version numerical 1.0 The version of the about element.
revised date YYY-MM-DD The date when the application

was last revised
created date YYY-MM-DD The date when the application

was created
author string The author of the application
copyright string Any string value The copyright holder of the

application
publisher string Any string value The publisher of the application

Child Element: description
Contains a descriptive information about the application.

Child Element: license
Contains the license under which the application is released.

Required attributes

Name Type Values Description
xlink:type enumeration simple The type link the URL is
xlink:actuate enumeration onRequest, onLoad Controls when the link will be

executed
xlink:href string URL The URL of the license

Child Element: installed
Will contain a date when the application was installed.

Element: resources
In this element we need to define all resources that are needed to make the application run offline. Links to images and xsl-files supplied in
the UI XML files will be downloaded automatically. The XSL file is available as "#nameDefined" and is to be defined in the href attribute of the
component that utilizes xslt to render XML.

Child Element: item
This element can be used to declare inline XSL files which is made possible by defining a name attribute and then the XSLT as child elements
of the item element. If no name attribute is supplied then the xlink attributes are needed and are used to define the information needed to
download the resource for offline use.

Required attributes

Name Type Values Description
name string Any string value The name of the item
xlink:type enumeration simple The type link the URL is
xlink:actuate enumeration onRequest, onLoad Controls when the link will be

executed
xlink:href string URL The URL of the license

Element: view
Every view file should be defines as a child element of the application root element.

Required attributes

Name Type Values Description
xlink:type enumeration simple The type link the URL is.
xlink:actuate enumeration onRequest, onLoad Controls when the link will be

executed.
xlink:href URL The URL of the license.

Element: process
Like view files, every process file should be defined as a child element of the application root element.

Observe that when declaring the main process file the xlink:actuate should be set as onLoad so that the file will be opened when the
application is launched.

Required attributes

Name Type Values Description
step string The step that should be initiated.
xlink:type enumeration simple The type link the URL is.
xlink:actuate enumeration onRequest, onLoad Controls when the link will be

executed.
xlink:href URL The URL of the license.

Regular Package
This is how an application file might look like. It is very simple and as mentioned earlier it is a definition of your application.

1 <?xml version="1.0"?>
2
3 <application name="HelloWorld" icon="icon://earth" xmlns:xlink="http://www.w3.org/1999/xlink">
4 <share>false</share>
5 <settings>
6 <path>home://</path>
7 </settings>
8
9 <about loader="false" version="1.0" revised="2019-04-10" created="2019-02-05" author="XIOS/3" publisher="XIOS/3">

10 <description>This is a test application</description>
11 <license xlink:actuate="onRequest" xlink:href="https://xios3.com/license/lgpl_2.1.xml">GNU LGPL 2.1</license>
12 <installed>2020-03-10</installed>

XIOS/3 Developer Manual - 2022-06-09 23/164

13 </about>
14
15 <resources>
16 <item xlink:actuate="onRequest" xlink:href="home://Documents/countries.xml"/>
17 </resources>
18
19 <view name="HelloWorldProcess" xlink:actuate="onLoad" xlink:href="home://Application/HelloWorld/views/mainUI.xml"/>
20 <process step="1" xlink:actuate="onLoad" xlink:href="home://Application/HelloWorld/processes/mainProcess.xml"/>
21 </application>

Example: Application Package for HelloWorld

Line 04
Here we define if the application should support Gesture Based Collaboration (GBC) or Application Sharing as it is publically known.

Line 05-07
Here the settings element is declared as well as the path child element. As this is a regular application we will set the path to home://
indicated that the application should be run on your local file system.

Line 09-13
The about section contains all required attributes. The loader is set to false since our application will load fast; thus no one is needed.

We will also set the author, copyright and publisher attributes to XIOS/3.

The description child element contains a short line description about the application.

We will also set the license element to the Xfree license. Finally the installed element will just contain a date.

Line 15-17
In the resources section we define the one file we would need to download is the application goes offline.

We define one item child element to initiate onRequest. This file is a XML data file containing information about countries.

Line 19-20
The final two child element will link to our only view file and our only process file.

We will set the process file to onLoad to ensure that it starts when the application starts. We will also set the step attribute to 1 which is our
first step that will open the view file.

Inline Package
This is an example of an inline application package. Here we define inline UI XML (View) and Process XML, as well as inline CSS and XSLT. A
regular application might divide the functionality in to different files however there is always an option to write this code as inline. This has
very positive results as fewer requests are made to the server and the application (or widget) will load faster.

1 <?xml version="1.0"?>
2
3 <application name="packagetest" icon="xios/icons/network/32x32/earth.png" xmlns:xlink="http://www.w3.org/1999/xlink">
4 <settings>
5 <path>home://Applications/</path>
6 <home>home://Documents/</home>
7 </settings>
8
9 <about loader="false" version="1.0" revised="2019-04-10" created="2019-02-05" author="XIOS/3" publisher="XIOS/3">

10 <description>This is the application description of Hello World.</description>
11 <license xlink:type="simple" xlink:actuate="onRequest" xlink:href="https://xios3.com/license/xios_1.xml">XIOS.1</license>
12 <installed>2013-03-10</installed>
13 </about>
14
15 <resources>
16 <item name="customXSL.xsl">
17 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
18 <xsl:template match="//book">
19 <div class="boldHeading">Title: "<xsl:value-of select="@title"/>"</div>
20 </xsl:template>
21 </xsl:stylesheet>
22 </item>
23 <item name="myDataDoc">
24 <books>
25 <book name="1985" author="George Orwell"/>
26 </books>
27 </item>
28 </resources>
29
30 <view xlink:actuate="onLoad" name="packagetest" title="Inline Application Package" author="XIOS/3" version="1.0" height="400" width="400"
31 resize="true" icon="xios/icons/network/16x16/earth.png">
32 <style>
33 .boldHeading{
34 font-weight:bold;
35 font-family:arial, verdana;
36 font-size:16px;
37 }
38 </style>
39 <panel name="panelContainer" height="100%" width="100%" type="row" padding="5">
40 <panel name="mainPanel" type="column" width="100%" height="100%" padding="5">
41 <render name="renderContent" href="#customXSL.xsl" height="100%" width="100%" scroll="false"/>
42 </panel>
43 </panel>
44 </view>
45
46 <process xlink:actuate="onLoad" name="packagetest">
47 <step id="1" name="Iniate Application">
48 <operation name="bind" value="#myDataDoc">
49 <component view="packagetest" name="renderContent" select="/lists/list[1]"/>
50 </operation>
51 </step>
52 </process>
53 </application>

Example: Process code for inline application package. Here we have placed UI XML, Process XML, XSLT and CSS in to one file.

Line 01-08
In the first few lines we first have the XML processing instruction on line 1. Then the application root element on line 3. Observe that the xlink
namespace is declared here. The reason for this is because xlink is used when dealing with view and process files.

XIOS/3 Developer Manual - 2022-06-09 24/164

The settings element contains two child elements: path and home.

Line 09-14
In the about element we describe information regarding the application. The information that is stored within the elements of this section is
not mandatory to make the application work, however it is good practice to do so.

Line 15-29
The application package file allows you to write inline data and XSLT by declaring them as resources. These can then by used by different UI
XML files, which are defined in the Application Package. The inline files are the same as external files, however they offer a great advantage
when working with widgets. Declaring XSLT and data files inline will reduce the load time of you application allowing it to start faster. Observe
that there are not xlink declarations on the item elements on the inline resources.

Our XSLT is very basic. First the root element, xsl:stylesheet and the xsl namespace declaration. We then proceed to match any book element
in the data that we bind, and to print the value in the name attribute of that element. Note that we are using the class attribute on the HTML
div element when we are outputting the book element's title attribute. This is made possible by the inline CSS declared in the view file below.

Line 30-44
In this part of the application package we describe our file. We start off with the view root element and the xlink:actuate which in our case
must be set to onLoad given that it is our only view file and that we will not open it directly from the process code. The view element has
some attribute that control the visual appearance of the view file, such as height, width and icon.

Next is the inline CSS which de describe in the style element. Here we only define one class, "boldHeading" which will be bold, in Arial font
and will be 16px in height. After the style element we describe our regular UI XML with panels and our XSLT driven component, render. When
we refer to the XSL file in the href attribute of the component we refer to #customXSL.xsl, which was the name that we defined for the inline
XSL in the resources section of the application package.

Line 45-52
Here we define our process XML file, which consists of a process element with a xlink:actuate attribute for which the value should be set to
onLoad. We will only use one step node-set where we will bind the data to the render component. Observe that the id attribute of the step
element is set to 1, because the application will always start by opening step with the 1 (unless otherwise defined) and not the first step by
order.

Widget
This is an example of a widget. It looks very similar to a regular application package, but here we make use of inline UI XML and Process XML
code. As a result we get faster loading time because fewer requests are made to the server.

In order to attach widgets to the widgetpane they also need to be defined in #Settings (xpath: /settings/widgets).

1 <?xml version="1.0"?>
2
3 <application name="HelloWorld" icon="xios/icons/network/32x32/earth.png" xmlns:xlink="http://www.w3.org/1999/xlink" instances="1">
4 <about loader="false" version="1.0" revised="2019-04-10" created="2019-02-05" author="XIOS/3">
5 <description>This is the application description of Hello World.</description>
6 <license xlink:type="simple" xlink:actuate="onRequest" xlink:href="https://xios3.com/license/xios_1.xml">XIOS.1</license>
7 </about>
8
9 <view xlink:actuate="onLoad" name="HelloWorldView" title="Hello World Widget" height="40" width="160" mode="widget">

10 <panel name="mainPanel" type="flow" height="auto" width="auto" padding="3">
11 <button name="buttonAlert" height="30" width="150"/>
12 </panel>
13 </view>
14
15 <process xlink:actuate="onLoad" name="HelloWorldProcess">
16 <trigger view="HelloWorldView" component="buttonAlert" event="Select" step="3"/>
17 <step id="1" name="Initiate Widget">
18 <operation name="call" value="2"/>
19 </step>
20
21 <step id="2" name="Set Button Text">
22 <operation name="callMethod" value="#HelloWorldView#buttonAlert">
23 <method name="setValue">
24 <param type="string">Click Me!</param>
25 </method>
26 </operation>
27 </step>
28
29 <step id="3" name="Component Clicked">
30 <operation name="callMethod" value="#HelloWorldView#buttonAlert">
31 <method name="setValue">
32 <param type="string">Hello World!</param>
33 </method>
34 </operation>
35 <operation name="action" value="#HelloWorldView">
36 <component name="buttonAlert" action="disable"/>
37 </operation>
38 </step>
39 </process>
40 </application>

Example: Application Package for HelloWorld Widget

Line 01-03
On the first line is the mandatory XML processing instruction with its attributes. The third line contains the root application element; with its
attributes name icon and then the xlink namespace declaration. The latter is needed because xlink is used (read more in the beginning of this
document). Here we have set the instances attribute to 1 effectively limiting the number of simultaneously to only 1.

Line 04-07
The about section contains all required attributes. The loader is set to false since our application will load fast; thus no one is needed.

We will also set the author, copyright and publisher attributes to XIOS/3.

The description child element contains a short line description about the application.

We will also set the license element to the Xfree license. Finally the installed element will just contain a date.

Line 09-13
Here is our inline UI XML code. It starts with the view element, which is the root element of view files. As you might see that this code is
regular UI XML code. There difference is that we need to set the xlink:actuate attribute to onLoad, meaning that it will be loaded when the
application is started. Also note that there is an attribute called mode on the view element. This is set to widget because we want the be able
to access widget behavior.

XIOS/3 Developer Manual - 2022-06-09 25/164

The rest of the UI XML is pretty simple. The view has a name (required), a height (required), a width (required) and a title (required). It
contains a panel which itself contains a button. The button is the center of our Hello World widget.

Line 15-16
This is where our inline process file starts. The xlink:actuate is also set to onLoad, and just like with the view file it means that it will load
when the application package is loaded. The required name attribute is also set.

In this widget application we will only use one trigger element. It is set to listen a to our button (buttonAlert) in the HelloWorldView-view file.
The event that will be expected is Select and when that is detected it will execute step 3.

Line 17-19
In our first step, which we should designate 1, as it is the default step to start, we will only perform one simple operation and that is to call
step 2.

Line 21-27
This step is called 2 and the only purpose of this step is to set the text of the button using the callMethod operation and the setValue method.
By setting the value of the operation to #HelloWorldView#buttonAlert we notify XIOS/3 that we want to execute the method on a component
called buttonAlert in the HelloWorldView-view file. This step is called from step 1.

Line 29-38
Our third step, called simply 3, will be executed when our button is clicked. As you might recall we used a trigger element to catch the Select
event when that has been made by the button. When that occurs this step is executed.

The step starts by using callMethod to change the text from Click Me! which we set in step 2, a another string value, Hello World!

Finally we use an action operation to disable the button component. Thus making it disabled and grayed out.

Line 39-40
Here we just close the process element and the application element.

Extending XIOS/3
XIOS/3 is designed to be dynamically extended with new components, operations, protocol, and more. Since both views and processes are
abstracted it means the underlying implementations can not only be dynamically loaded on demand but also replaced within a running XIOS/3
instance.

Additional Components
The most complex part of XIOS/3 to extend is the component library, since it typically involves JavaScript code, XSL template, and
dependencies. All of these aspects are described for built in components in the system configuration document which by default is loaded
from xios/config/system.xml. It is possible to modify this document or create a new configuration file and load instead. Beware of the XIOS/3
preload system that bundles resources in the system file, intercepting attempts to load a modified system.xml unless you remove or replace
it. To instead point to a different resource, just add the "system" property to the boot object.

1 <script>
2 var boot = { system : "/system.xml" };
3 </script>

Example: Bootloader parameters

A simpler way to just add a few components to the system configuration is to use a script tag of type "xios" and declare the name attribute
"addConfig" with the components to add. As a simple example we can use this XSL only component that defines a loader spinner. The XSL
code creates a rotating, animated waiting spinner with configurable size and color.

1 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
2
3 <xsl:template match="spinner">
4 <xsl:variable name="width">
5 <xsl:choose>
6 <xsl:when test="@width"><xsl:value-of select="@width"/>px</xsl:when>
7 <xsl:when test="@height"><xsl:value-of select="@height"/>px</xsl:when>
8 <xsl:otherwise>100px</xsl:otherwise>
9 </xsl:choose>

10 </xsl:variable>
11 <xsl:variable name="color">
12 <xsl:choose>
13 <xsl:when test="@color"><xsl:value-of select="@color"/></xsl:when>
14 <xsl:otherwise>#000</xsl:otherwise>
15 </xsl:choose>
16 </xsl:variable>
17
18 <div id="{@name}" style="width: {$width};">
19 <svg class="circular" viewBox="25 25 50 50">
20 <style>
21 @keyframes
22 rotate { 100% {
23 transform: rotate(360deg);
24 }
25 }
26
27 .circular {
28 animation: rotate 2s linear infinite;
29 transform-origin: center center;
30 }
31
32 .path {
33 stroke-dasharray: 89, 200;
34 stroke-linecap: round;
35 stroke-width: 2;
36 stroke-miterlimit: 10;
37 stroke: <xsl:value-of select="$color"/>;
38 }
39 </style>
40 <circle class="path" cx="50" cy="50" r="20" fill="none"/>
41 </svg>
42 </div>
43 </xsl:template>
44
45 </xsl:stylesheet>

Example: spinner.xsl

The component is then added to the set of components using the following addition to the component definitions

XIOS/3 Developer Manual - 2022-06-09 26/164

1 <script type="xios" name="addConfig">
2 <component name="Spinner" tag="spinner">
3 <skin href="xios/ui/Spinner/spinner.xsl"/>
4 </component>
5 </script>

Example: HTML script tag

For a more complicated example that involves JavaScript code as well as dependencies on external resources, let's look at a toggle from
Fluent UI implemented with React. The components are implemented in a single resource called office-ui-fabric-react which, as the name
implies, depends on React. This is actually two dependencies, one on React DOM which in turn depends on React. This dependency graph is
show in this component definiton.

1 <script type="xios" name="addConfig">
2 <component name="FluentToggle" class="CA_FluentToggle" href="/Fluent/CA_FluentToggle.js" tag="fluent-toggle">
3 <dependency href="https://unpkg.com/office-ui-fabric-react@7/dist/office-ui-fabric-react.js" symbol="Fabric">
4 <dependency href="https://unpkg.com/react-dom@16.8.6/umd/react-dom.development.js" symbol="ReactDOM">
5 <dependency href="https://unpkg.com/react@16.8.6/umd/react.development.js" symbol="React"/>
6 </dependency>
7 </dependency>
8 <skin href="/Fluent/fluent.xsl"/>
9 </component>

10 </script>

The XSL in this case is trivial, a single div element to hand over to React for it to render its DOM into.

1 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
2
3 <xsl:template match="fluent-toggle">
4 <div id="{@name}"/>
5 </xsl:template>
6
7 </xsl:stylesheet>

The JavaScript is where all the relations between XIOS/3 internals and the API of the component are established. First of all on line 1 the entire
code is wrapped in an anonymous function to not leak any symbols into the global variable space. Instead on line 73 there is a registration
call using the class name used inthe component definition. Then line 2 actually defines the class, extending the generic XIOS/3 Component
class. The first entry point for this component wrapper is the init method where a dependency object is given as argument. This object maps
from the symbol names in the component definition to the actual loaded objects.

The actual code in the init method of course varies depending on the component to wrap, but the common pattern for React comopnents is to
define a class that extends the React.Component class (line 10). In it the state is set up according to parameters from the view XML code (line
14-18), callback for changes (line 17) and a mechanism to make the React object externally visible for state changes (line 19).

All the rest of the methods, with the exception of toggle, are Component API methods. unload is called when the component is permanently
removed. setValue and getValue are used to see and alter the value of the component directly. update is used if the component is bound to
another data source, like a document, and updates to the state is signalled through this method. enable and disable are called from the
respective action operations.

1 !function()
2
3 class CA_Fluent extends Component {
4
5 init(dep) {
6
7 const _this = this;
8 this.reactdom = dep.ReactDOM;
9

10 class Toggle extends dep.React.Component {
11 constructor() {
12 super();
13 this.state = {
14 disabled : _this.ui.getAttribute("enabled")==="false",
15 onText : _this.ui.getAttribute("onText"),
16 offText : _this.ui.getAttribute("offText"),
17 onChange : _this.toggle.bind(_this),
18 };
19 _this.obj = this;
20 }
21
22 render() {
23 return dep.React.createElement(dep.Fabric.Toggle, this.state);
24 }
25 }
26
27 this.reactdom.render(dep.React.createElement(Toggle), this.getElement());
28 }
29
30 unload() {
31 this.reactdom.unmountComponentAtNode(this.getElement());
32 }
33
34 getValue() {
35 return this.checked ? "true" : "false";
36 }
37
38 setValue(to, winEvt) {
39 to = (to === "true");
40 this.obj.setState({checked:to});
41 this.toggle(winEvt, to);
42 }
43
44 update(evtObj) {
45 if(!evtObj || evtObj.ruleUpdate ||
46 (evtObj.updates && evtObj.updates[0].originator !== this)) {
47
48 if(this.xlink &&
49 (this.dataNode = this.xlink.selectSingleNode(this.xpath))) {
50 this.setValue(this.dataNode.textContent);
51 }
52 }
53 }
54
55 toggle(winEvt, to) {
56 if(to == this.checked) {
57 return;
58 }
59 this.checked = to;
60 sys.evtMng.notifyListeners(this, to ? "Select" : "Release", winEvt, null);
61 this.setProperty("selected", to ? "true" : "false", winEvt, true);
62 }
63
64 enable() {
65 this.obj.setState({disabled:false});

XIOS/3 Developer Manual - 2022-06-09 27/164

66 }
67
68 disable() {
69 this.obj.setState({disabled:true});
70 }
71 }
72
73 boot.addComponent("CA_Fluent", CA_Fluent);
74
75 }();

Example: CA_FluentToggle.js

Additional Operations
The individual operations called from the process langauge in XIOS/3 are quite simple. All the complicated state management, resource
management, expression handling etc. are handled by the calling layer above the operation implementations. Additional operations can be
added either by setting boot.operations to an object mapping operation name to a corresponding function, or by putting the operation code in
a separate javascript file and declare it a dependency in the boot depend section.

1 var boot {
2 depend : {
3 js : ["/ops/PO_validate.js"],
4 }
5 };

Example: Bootloader parameters

The code of the operation is simply an asynchronous function that returns a promise that resolves when the operation processing is done. The
operation function is called with a process object representing the current running process, a context object representing the context in which
the process is operating, an XML element node corresponding to the operation node in the process XML document, and an event object
representing the event triggernig this operation.

1 !function() {
2 boot.addOperation("validate", PO_validate);
3 function PO_validate(process, context, operation, evt) {
4 // Return Promise
5 }
6 }();

Example: PO_validate.js

UI Development
In this section we will cover how to build a UI for an application, the fundamentals in UI layout concepts in XIOS/3 and how visual components
are put together.

UI XML is the visual part of XIOS/3 Application Development. When considering the MVC design pattern, UI XML equals the view.

What this section covers
This part of the documentation will cover all parts of UI Development. The component attributes section will explain everything you need to
know about attributes and how they affect components. Here we also cover the concept of required and optional attributes as well as what
type of attribute values are possible to set.

UI XML also gives the developer a possibility to change components states by using component actions. Which are executed inside the
application logic (Process XML). There is also the possibility to apply methods on components and that is also covered in this section. By using
methods and actions you can change how the end-user interacts with the GUI environment.

As the main part of UI XML the components are the center of attention in this section. The section page Component Types explains the types
of components that exist.

We will also cover Rules and explain how these can be used to dynamically alter components depending on what data is bound to the
component.

This part of the documentation is often updated so remember to come back to see available attributes, events, methods and actions. This is
always kept up to date.

Overall Structure
This section covers the view element explain how to use its attributes as well as the difference between widgets and normal applications. We
also briefly explain how toolbars and menubars are used.

The final section titled layout covers the basics of Application Layout and some optimization tips.

View
The view element is the root element for all view-files (UI XML files).

Usage
The most important attribute is name which is used when catching events from components located inside the view file. You can read more
about this in the Expressions section.

In this element we also define if the view is a widget by setting the value inside the mode attribute. While widgets and regular applications
are built in the same way, there are differences in how they are displayed when booted. Widgets lack a title bar and thus buttons for closing,
minimizing and maximizing it. It also has transparent backgrounds which regular applications cannot have. Widgets have a special widget
context menu that is the same for all widgets. Developers can add their own submenu within this context menu by adding a menu
component. It will be picked up by the system and displayed as a submenu called options on the default context menu. Observe that you can
only use a single menu component for this purpose.

A splash screen that is while the application is loading, will be displayed when the splash attribute is set to true. In this splash screen
information contained whithin the title, copyright, publisher and created attributes.

This element offers many options when it comes to size. The height and width attributes are the starting size of the view. The view will be
resizable by default but can be constrained by setting resize to false. Furthermore there are also four attributes which are used to control the
maximum and minimum height and width of the view. If resize if set to false these will have no effect. The autoresize attribute which is
available for widgets allows your widget to be resized according to the content inside the widget.

The icon attribute sets the application icon which is not visible if the mode attribute has been set to widget.

XIOS/3 Developer Manual - 2022-06-09 28/164

Attributes

Required Attributes

Name Type Values Description
width measure values integer (px) Start width of the dialog.
height measure values integer (px) Start height of the dialog.
icon string URL Path to dialog icon. This is shown

in the title bar of the dialog when
styled as an application window.

look enumeration blue, graphite, liquid, alert Defines the style of the dialog
when shown as an application
window.

mode enumeration main, widget, window Application mode to be used
name string Any string value The unique name of the view
resize boolean true, false If the dialog should be resizable

Optional Attributes

Name Type Values Description
alwaysontop boolean false, true If the dialog should stay on top

(Highest Z-index)
author string Any string value The author of the view
autoresize boolean false, true Autoresize widget to fit content
bottom integer pixels Position the dialog this many

pixels from the bottom of the
window. Overrides "top" attribute.

bottomExclusion integer pixels If this view is put as the main
view (background) this number of
pixels at the bottom will be off
limits to place a window title bar
in.

close boolean true, false Determines if the dialog is
allowed to be closed.

copyright string Any string value Copyright notice
created date [YYYY-MM-DD] Creation date of view
draggable boolean true, false Determines if the dialog is

allowed to be repositioned.
handleClose boolean false, true If closing of the application

should be handled by the
application and not by the system

iconbar boolean true, false Defines if the icon in the titlebar
should be displayed

left integer pixels Position the dialog this many
pixels from the left border of the
window.

localedir string URL The path to the folder which
contains language localization
files for translation

logotype string URL splash screen logo (110x25px)
maxHeight measure values integer (px) Maximal height of the view
maxWidth measure values integer (px) Maximal width of the view
minHeight measure values integer (px) Minimal height of the view
minWidth measure values integer (px) Minimal width of the view
modal boolean false, true Require user interaction to close

window
position enumeration default, center The starting location of the wiew
publisher string Any string value Name of publisher
revised date [YYYY-MM-DD] Last revision date of view
right integer pixels Position the dialog this many

pixels from the right border of the
window. Overrides "left" attribute.

share boolean true, false Enable/disable window sharing, if
disabled the window cannot be
shared to another user

splash boolean false, true If a splash screen should be
displayed while loading

taskbar boolean false, true if a taskbar should be displayed
title string Any string value The header/title of the view.

Defaults to the view name.
top integer pixels Position the dialog this many

pixels from the top of the
window.

topExclusion integer pixels If this view is put as the main
view (background) this number of
pixels at the top will be off limits
to place a window title bar in.

version enumeration 1.0 File version (personal use)
winstate boolean true, false If XIOS/3 should remember the

position and size of the
applicaiton

Events
These events are specific for views:

View Events

Methods
These methods only apply to view files:

XIOS/3 Developer Manual - 2022-06-09 29/164

attach, detach, executeScript, focus, maximize, minimize, getDimension, restore, restoreAppDlg, setImage, setDimension, setIcon, setTitle

Toolbars
The toolbar is a menu component that can be placed outside the wrapping panel.

Usage
Toolbars can be placed at the top, bottom, right or left of the main content. It can also be floatable. This menu type can use graphics and
contain other components such as combobox and slider.

Figure: Toolbar placement area as represented by the grey colored (outer) area.

Menubars
The menubar is a menu component that can be placed outside the wrapping panel.

Usage
Menubars can be placed at the top, bottom, right or left of the main content. Unlike the toolbar this component is only text based and can
only contain menu components.

Figure: Menubar placement area as represented by the grey colored (outer) area.

Layout
Layout is one of the most important areas of XIOS/3 Application Development. It consists of three main parts; Usability, Optimization and
Application Layout. Here we will cover the latter two.

Application Layout
Every UI XML file has a root element called view in which all the UI XML is stored. Inside this view element all immediately visible component
code must be wrapped in a a Panel component, or a component servince the same role. Exceptions are the non-freely positioned MenuBar and
ToolBar with their respective children, and elements not directly locked to the application window, like context menues.

The main purpose of the Panel component is to act as a container of other components. This means that it is used to form complex layouts.
Panels can be placed inside each other to form desired layouts.

Basic Layouts

You can find a selection of basic layout examples and in the examples section.

Basic component Layouts

Almost all components that can be placed inside a panel (see Parent Element for each component) will behave like a panel. Meaning that they
can be aligned, placed in rows and placed in columns.

Examples of component layouts can be found in the Applications Examples

Optimization
No matter if you are designing a small or large application, optimization is always important. When it comes to layout much can be done (or
avoided) to make your application faster, better and more user-friendly.

You must learn to use Panels in a smart way. By that we mean that you should use as few as possible. When setting the width and height on
panels (or on any other component for that matter) try to only use fixed values (pixels) rather than percentage or auto. That will make your
application load faster.

Using Components
This section covers everything related to components. First the types of components that are available, followed by a section explaining how
attributes are used and what values they can have. We then move on to list all available events, actions and methods that can be used on
components or that emitted by components.

Here we also have a section entitled "Look and Feel" which covers the usage of CSS within XSLT files. We do not cover what CSS is or how
that language is used but instead how to use it when developing XIOS/3 applications. The definition of rules and which components that can
utilize them is also covered here.

A complete component reference is also featured which in great detail lists all attributes, available methods and events and much more.

XIOS/3 Developer Manual - 2022-06-09 30/164

Types
The UI XML language is based on components that are written as XML elements, with attributes and child elements to control them. There are
two basic element types which the UI XML consists of; the High Level Element and the Child Element.

High Level Elements do not require any special type of parent component except for the mandatory Panel component. The reason for this is
that the XIOS/3 rendering engine requires a Panel to be the only direct child element of the root element view. Child Element components are
components that require a specific parent component other than the Panel element, an example of child element component is the DataItem
which requires Menu as a parent element.

There are also several component types. These categorize the main purpose of the component and/or functionality. Some components are
categorized as two or more of the types.

Application Components
Components that are extremely self-sufficient and are actually applications in themselves, but can be integrated in to you applications.

Atomic Components
Components that are very easy to use component that offer easy interaction to end-users. These components normally do not need bound
data to work. Because of this they have limitations of what can be achieved by using them.

Data Driven Components
Components that need XML data to be bound to them to be able to function. Data driven components are the strength of XIOS/3, since you
can bind components to data or each other (and if data is available share it). The data itself can come from either XIOS/3 or any web service
on the web that generates XML.

Menu Components
Components that are used to construct a variety of different types of menus. There are several options and include expander menus, context
menus (created when an end-user right-clicks on a component) and of course traditional toolbar menus.

XSLT Driven Components
Components that need XSLT files in order to function. These components also require data to be bound to them in order to render the XML
data in a desired way. XSLT driven components offer much flexibility when designing applications, since they allow for a total customization of
the data displayed as well as how it will be displayed.

Wrapper Components (Container Components)
Component that are caused to contain other component, either for layout purposes or for markup purpose to allow the system to handle child
element component is a certain way using Rules for instance.

Attributes
All components contain a number of attributes controlling how the component should be initiated, interact and be visualized. How an attribute
will affect the component will depend on what value it is set to. An attribute value could be of any of the types defined in section Attribute
values.

A component must contain all the required attributes and may contain any or all of the optional attributes . To be able to control and
customize specific behavior for components, a component can have its own specific attributes.

The component-specific attributes are described in section Component Reference, where all the components are explained in detail.

Attribute values
string
A string value is text that must start with a letter [A - Z | a - z] and may be followed by any number of letters, digits [0 - 9], hyphens [-],
underscores [_], periods [.] and colons [:].

Example
Boston, Figure9, bookCase_19

boolean
A boolean value represents the value true or false. If any other value is specified the value will be interpreted as a false value. If an attribute
of boolean type is expected but not present, it will be interpreted as a false attribute value.

Example
true, false

numerical
A numerical value is a digital number representing a negative - [0 - n] or positive [0 - n] integer value. The numerical value can be used to
specify a width, height, length, iteration, interval or any other instance where numbers are needed.

Example
520, -95, 233

measure values
If the numerical value is a measure of the component the pixels (px) or percentage (%) units are used. If a measure is specified without unit
identifier the value will be interpreted as a pixel value. The percentage value is interpreted as the percentage of the maximum value the
component can fill up, which depends on where and how it is contained.

Example
125px, 50%, 400px

enumeration
An enumeration value is a set of predefined string values. They are often used when defining modes or types of which there is a limited
number.

XIOS/3 Developer Manual - 2022-06-09 31/164

Example
Christmas, Easter, midsummer

color
A color value is a six-digit hexadecimal RGB [0 - 9 | a - f | A - F] value defining the red, green and blue color. Each color needs two digits
ranging from 00 to FF defining the strength of the color. The color value can contain the optional number [#] prefix.

Example
#ff0000, #00ff00, #0000ff, #cccccc

reference
A reference value is an absolute or relative document path referencing to a document.

Example
http://www.xios3.com/file.xml, home://Document/file.xml, images/icons/home.png

css
A CSS value defines CSS (cascading style sheet) properties. The syntax of the CSS is a repeated sequence of property name, colon [:],
property value and an ending semicolon [;].

Example
font-family:arial, verdana; font-size:11px; font-weight:bold;

Common attributes
The common attributes are component attributes that are managed by XIOS/3 directly and no the component code itself, and thus are
avaialble on all components.

name
The most important common attribute is the name attribute, which is required on every component you want to interact with from the
Process XML language. It is required when you bind data to the component, when you perform actions and mathods on it. You also need it to
subscribe to events from the component.

Name Type Values Description
name string The name of the component. It

should be unique to the view.

width
The width attribute will set the component width in pixels or percentage value.

Name Type Values Description
name measure values integer (px), percent (%) The width of the component

height
The height attribute will set the component height in pixels or percentage value.

Name Type Values Description
height measure values integer (px), percent (%) The height of the component

title
The title attribute shows the specified text as a tool tip when the component is hovered.

Name Type Values Description
title string Any string value Tool-tip text.

label
The label attribute shows the specified text as a label above the component.

Name Type Values Description
label string Any string value The label text

lstyle
The lstyle attribute is used to style the label.

Name Type Values Description
lstyle string CSS Syntax Overrides the default label style

padding
The padding attribute defines the space between the component border and the component content.

Name Type Values Description
padding numerical [0...n] 0

tabindex
The tabindex attribute defines in which order the tab button should focus on the components.

Name Type Values Description
tabindex numerical [1...n] 0

XIOS/3 Developer Manual - 2022-06-09 32/164

style
The style attribute overrides CSS style information on the encompassing/major element of the component.

Name Type Values Description
style css CSS Syntax Overrides the appearance of the

component using CSS

draggable
Declare this component as draggable. A draggable component can be dragged to a different component for drag and drop. A parent
component will handle drag events for its children if they are not declared as draggable. The recipient component of the drop will get the
current value of the component.

Name Type Values Description
draggable boolean true, false false

dragcomponent
Point out a component that should act as the dragged component if this component, or a child with no drag information, is targeted in a drag
and drop event.

Name Type Values Description
dragcomponent string component name What component to use as drag

component.

windowdrag
Indicate that dragging the component may be used to drag the window of the view around.

Name Type Values Description
windowdrag boolean true, false Can component be used to drag

the window.

Events
A component end-user interaction triggers something called an event. A component event is a signal thrown to the application process XML
trigger. The trigger will perform execution of the application logic for that specific signal, when the event occurs and the signal is thrown.

This section will present events in brief to give the reader an understanding of what the events should be used for. For a more detailed
explanation of how to use events please read the documents Process Development and Process Development manual.

Event types
The event types that follow below are event listeners waiting for end-user interactions in the GUI to be performed, throwing events. They play
a key role in how the components react and interact with the other components of an application.

AlignCenterRelease
This event occurs when text that is aligned in the center is released.

Applies To:
Editor, RichText

AlignCenterSelect
This event occurs when text that is aligned in the center is selected.

Applies To:
Editor, RichText

AlignJustifiedRelease
This event occurs when text that has justified alignment is released.

Applies To:
Editor, RichText

AlignJustifiedSelect
This event occurs when text that has justified alignment is selected.

Applies To:
Editor, RichText

AlignLeftRelease
This event occurs when text that is aligned to the left is released.

Applies To:
Editor, RichText

AlignLeftSelect
This event occurs when text that is aligned to the left is selected.

Applies To:
Editor, RichText

XIOS/3 Developer Manual - 2022-06-09 33/164

AlignRightRelease
This event occurs when text that is aligned to the right is released.

Applies To:
Editor, RichText

AlignRightSelect
This event occurs when text that is aligned to the right is selected.

Applies To:
Editor, RichText

Attached
This event occurs when a widget is attached to the widgetpane component.

Applies To:
WidgetPane

BGColorRelease
This event occurs when text that has background color is released.

Applies To:
Editor, RichText

BGColorSelect
This event occurs when text that has background color is selected.

Applies To:
Editor, RichText

Blur
This event occurs the user clicks outside the component after having set focus to it.

Applies To:
Input

BoldRelease
This event occurs when text that is bold is released.

Applies To:
Editor, RichText

BoldSelect
This event occurs when text that is bold is selected.

Applies To:
Editor, RichText

BulletListRelease
This event occurs when a bullet list has been released (unselected) inside a component that allows rich text editing.

Applies To:
Editor, RichText

BulletListSelect
This event occurs when a bullet list has been selected inside a component that allows rich text editing.

Applies To:
Editor, RichText

Change
This event occurs when the selected value of the component has been changed.

Applies To:
ComboBox, Input, RichText

Changed
This event occurs then the data bound to the component has been changed.

Applies To:
TextArea, XMLEditor

XIOS/3 Developer Manual - 2022-06-09 34/164

Click
This event occurs when the component has been clicked.

Applies To:
Map

Close
This event occurs when the component has been closed.

Applies To:
Console, Panel

Closing
In order for this event to occur the handleClose element has been added, and the value set to 'true', to the Close Operation when opening a
view. The event occurs when the "X" is clicked to close the application. The application will not be clicked instead only the event will be fired
allowing the developer to decide what to do.

Applies To:
View

Complete
This event occurs when the user trys to play a part of a media file but has not been loaded yet, which will make the component pause the
media and throw an "Loading" event. It will wait until the the file loads enough to start playing from the requested part of the file and then
continue playing, while throwing the "Complete" event.

Applies To:
Media

Completed
This event occurs after the content has been loaded

Applies To:
Browser

ContextMenu
This event occurs when the user right-clicks on the component.

Applies To:
ButtonBox, Calendar, Editor, Grid, Image, ListView, RichText, TabStrip, Textarea, Tree

DateChanged
This event occurs when a new date has been set.

Applies To:
Calendar, Date

DecorationRelease
This event occurs when text that is underlined is released.

Applies To:
Editor, RichText

DecorationSelect
This event occurs when text that is underlined is selected.

Applies To:
Editor, RichText

Delete
This event occurs when a selected item in the component has been deleted.

Applies To:
Grid, Tree

Detached
This event occurs when a widget has been detached from the widget pane.

Applies To:
WidgetPane

DoubleClick
This event occurs when the end-user double-clicks on the left mouse button.

XIOS/3 Developer Manual - 2022-06-09 35/164

Applies To:
Calendar, Editor, Grid, Image, Label, ListView, Render, RichText, Tree

drawingComplete
This event is occurs when the editor has completed the drawing of the XML data into visual objects.

Applies To:
Editor

DrawMode
This event is occurs when "Draw Mode" has been activated for the Editor component and is identified by the cursor becomming a crosshair.

Applies To:
Editor

drawModeOff
This event is occurs when "Draw Mode" has been deactivated for the Editor component and is identified by the cursor style returning to
normal.

Applies To:
Editor

Drop
This event occurs when something is dropped onto the component.

Applies To:
Calendar, Console, Editor, Grid, Image, Label, List, ListView, Panel, RichText, Tree WidgetPane

Edit
This event occurs after editing has been performed on data in the component. To initiate editing see: callMethod edit.

Applies To:
ListView, Tree

EditEnd
This event occurs after the editfield is closed no matter if changes have been made.

Applies To:
ListView

End
This event occurs when the editor component is in fullscreen mode and the slide show has ended.

Applies To:
Editor

Empty
This event occurs when the component is emptied.

Applies To:
List

Escape
This event occurs when the ESCAPE button is hit on the keyboard while the component is selected.

Applies To:
Input

FGColorRelease
This event occurs when text that has foreground color has been released.

Applies To:
Editor, RichText

FGColorSelect
This event occurs when text that has foreground color has been selected.

Applies To:
Editor, RichText

Focus
This event occurs when focus has been set on the component.

XIOS/3 Developer Manual - 2022-06-09 36/164

Applies To:
ComboBox, Date, Input, RichText

FontFamilyRelease
This event occurs when text that has font-family style has been released.

Applies To:
Editor, RichText

FontFamilySelect
This event occurs when text that has font-family style has been selected.

Applies To:
Editor, RichText

FontSizeRelease
This event occurs when text that has font-size style has been released.

Applies To:
Editor, RichText

FontSizeSelect
This event occurs when text that has font-size style has been selected.

Applies To:
Editor, RichText

Fullscreen
This event occurs when the component is displayed in full screen.

Applies To:
Console

Header
This event occurs when the user clicks on the header of grid.

Applies To:
Grid

HeaderContextMenu
This event occurs when the user right-clicks on the header of grid.

Applies To:
Grid

Home
This event occurs when the editor component is in fullscreen mode and the slide show has been restarted.

Applies To:
Editor

Hover
This event occurs when the end-user hovers over the component with the pointer.

Applies To:
ButtonBox

HttpHyperlink
This event occurs when a hyperlink (http://) is clicked inside a richtext component.

Applies To:
RichText

Init
This event occurs when the component is rendered.

Applies To:
Accordion, Menu, Panel

ItalicRelease
This event occurs when text that is italic has been released.

XIOS/3 Developer Manual - 2022-06-09 37/164

Applies To:
Editor, RichText

ItalicSelect
This event occurs when text that is italic has been selected.

Applies To:
Editor, RichText

Key
This event occurs when a keyboard key has been pressed (onKeyDown) while the focus in on a supported component. The trigger does not
contain any XML information.

Applies To:
Input, RichText, Textarea

Loading
This event occurs under different circumstances for different components.

The Browser component throws this event when the content of the component has started to load a webbpage.

The Media component throws this event when the user trys to play a part of a media file but has not been loaded yet, which will make the
component pause the media.

Applies To:
Browser, Media

Ready
This event occurs when a component with external dependencies has been loaded and can accept interaction.

Applies To:
Map

Menu
This event is fired from two different components in two different ways.

For the calendar component the event occurs when the end-user right-clicks (requests a contextMenu) on the Calendar component, while not
selecting any appointments (data).

For the panel component the event occurs when the end-user clicks on a small arrow, which is only visible when when de menu attribute is
set to true.

Applies To:
Calendar, Menu, Panel

MediaEnded
This event is occurs when the media item has completed playback. The trigger (!) generated contains a reference to the folder containing the
file.

Applies To:
Media

MediaRange
This event occurs when a song has started playback. The trigger (!) generated contains a reference to the folder containing the file.

Applies To:
Media

Move
This event occurs when the content of the component has been moved.

Applies To:
Map

MoveItem
This event occurs when the end-user drags a selected item.

Applies To:
List, ListView

Next
This event occurs when the editor component nagivates to the next slide.

Applies To:
Editor

XIOS/3 Developer Manual - 2022-06-09 38/164

NumberListSelect
This event occurs when a numbered list has been selected inside a RichTextEditor.

Applies To:
Editor, RichText

Paste
This event will occur when the user clicks on Ctrl+V. It will result in the paste-node is the trigger.

Applies To:
ListView

Previous
This event occurs when the editor component nagivates to the previous slide.

Applies To:
Editor

Release
This event occurs on mouse up or when something is deselected depending on the specific component.

Applies To:
ButtonBox, Calendar, List, ListView, Radio, RichText, TabStrip

Return
This event occurs when hitting the "Enter" key while the component is selected.

Applies To:
Calendar, Grid, Input, ListView, TextArea

Saved
This event occurs then the data bound to the component has been saved.

Applies To:
TextArea, XMLEditor

Select
This event occurs when the component has been selected. It is equivalent to onclick (and in some cases to onmousedown).

Applies To:
Accordion, Button, ButtonBox, Calendar, CheckBox, Clock, ComboBox, DataItem, Editor, Grid, Group, Image, Input, Item, Label, List, ListViev,
Radio, Rating, Render, RichText, Slider, TabStrip, Tree

SelectedDate
This event occurs when a date is selected and displayed in the Calendar.

Applies To:
Calendar

SelectMode
This event occurs when "Select Mode" has been activated (and "Draw Mode" has been deactivated) for the Editor component and is identified
by the cursor style returning to normal.

Applies To:
Editor

SelectedMore
This event occurs when an event has been extended from a single day to two or more while in single day view.

Applies To:
Calendar

SetActive
This event occurs once the view has been focused.

Applies To:
View

Show
This event occurs when the component is displayed.

Applies To:

XIOS/3 Developer Manual - 2022-06-09 39/164

Menu

SubjectMore
This event occurs when the "More Details" link is clicked in the Calendar Quick Event Scheduler.

Applies To:
Calendar

Tab
This event occurs when the tab button is hit.

Applies To:
Console

TriggerEvent
This event allows you to catch you own defined events from the ListView and Render components. In listview components the trigger will
contain the selection data. This is however not available in the Render component.

Applies To:
ListView, Render

UnSelect
This event occurs when a shape has been unselected in the editor component.

Applies To:
Editor

UnSelection
This event occurs when the end-user unselects the component

Applies To:
XMLEditor

UpdateTime
This event occurs when a song has started to play and is fired continuously throughout the playback.

Applies To:
Media

Actions
A component state can be changed through something called an action. A component action is executed from any process XML logic by
calling to the operation named action.

This section will present the concept of actions in brief to give the reader an understanding of what the actions should be used for. For a more
detailed explanation of how to use and execute actions, please read the document Process Development and the Process Development
manual.

Some actions are similar to methods. When that is the case understand that actions are handled faster than methods by XIOS/3 so if you can
replace methods by actions you should.

Action types
The action types that follow are behaviors that change a state and sometimes the look and feel of a component. They play a key role in how
the components behave and interact with the end-user.

activate
The activate action is used to set focus on a component. It works similarly to the focus method.

When a component is focused end-users normally can interact with it using the keybord.

Applies To:
RichText, TextArea, Tree

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="activate"/>
3 </operation>

Example: Process code for the add action

Related topics
focus

add
The add action is used to dynamically create (add) components inside other components. You can add Items to the Menu component or
components to the Container component.

XIOS/3 Developer Manual - 2022-06-09 40/164

Applies To:
Container, Menu

Example

1
2 <operation name="action" value="#view1">
3 <component name="component1" action="add" value="#view1#ListDynamicCreation"/>
4 </operation>

Example: Process code for the add action

Related topics
Container, Menu

clear
The clear action clears the value inside Input fields and Textarea. Useful for clearing form like application sections after data is saved.

Applies To:
Input, Textarea

Example

1 <operation name="action" value="#view">
2 <component name="component1" action="clear"/>
3 <component name="component2" action="clear"/>
4 </operation>

Example: Process code for the add action

Related topics
Input, Textarea

disable
The disable action will make a component grayed out in the GUI and disable all end-user interaction to the component.

This is for instance very useful when an application should disable the an Input component but should still be visualized in the GUI.

Applies To:
Button, ButtonBox, Calendar, Checkbox, Color, ComboBox, DataItem, Date, ExpanderItem, Grid, Group, Input, Item, Menu, Menu Item,
RichText, Slider, Textarea

Example

1 <operation name="action" value="#view1">
2 <component name="component2" action="disable"/>
3 </operation>

Example: Process code for the disable action

Related topics
enable

enable
The enable action is the opposite of the disable action and will return the component to its original state. The component will no longer be
grayed out in the GUI and the end-user interaction will be set to normal.

Applies To:
Button, ButtonBox, Calendar, Checkbox, Color, ComboBox, DataItem, Date, ExpanderItem, Grid, Group, Input, Item, Menu, Menu Item,
RichText, Slider, TextArea

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="enable"/>
3 </operation>

Example: Process code for the enable action

Related topics
disable

hide
The hide action will make a component disappear from the GUI until it is visualized again using the show action. This is useful when an
application should both disable end-user interaction and to make the entire component hidden in the GUI.

Applies To:
Accordion, Browser, Button, ButtonBox, Calendar, Chart, CheckBox, Clock, Color, ComboBox, Console, Container, DataItem, Date, Expander,
ExpanderItem, ExpanderMenu, Form, Grid, Group, Image, Info, Input, Label, List, ListView, Menu, Menu Item, MenuBar, Panel, Radio, Render,
RichText, Slider, TabStrip, TextArea, XMLEditor, Toolbar, ExpanderMenu, Tree, Grid, Group

XIOS/3 Developer Manual - 2022-06-09 41/164

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="hide"/>
3 </operation>

Example: Process code for the hide action

Related topics
show

open
The open action is used to open ContextMenus.

Applies To:
Menu

Example

1 <operation name="action" value="#view1">
2 <component name="menu1" action="open"/>
3 </operation>

Example: Process code for the open action

Related topics
Close

readonly
The readonly action sets the component in read only mode, meaning that it doesn't accept any user input that would modify the bound data.
If the bound data is inherently read only the component will enter this mode on its own.

Related topics
readwrite

readwrite
The readwrite action sets the component in write enabled mode, meaning that it accepts user input that would modify the bound data.

Related topics
readonly

release
The release action is used when simulating an end-user interaction with the GUI, performing an event which deselects a component in the GUI
without end-user participation. This is useful when an end-user interaction with a component should deselect a number of components
simultaneously without requiring the end-user to deselect them all manually in the GUI.

This will trigger the Release event.

Applies To:
Button, ButtonBox

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="release"/>
3 </operation>

Example: Process code for the disable action

Related topics
select

select
The select action is used when simulating an end-user interaction with the GUI, performing an event which selects a component in the GUI
without end-user participation. This is useful when an end-user interaction with a component should select a number of components
simultaneously without requiring the end-user to select them all manually in the GUI.

Applies To:
Button, ButtonBox, Image, Menu Item

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="select"/>
3 </operation>

Example: Process code for the select action

XIOS/3 Developer Manual - 2022-06-09 42/164

Related topics
release

setValue
The setValue sets a simple string value to a component.

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="setValue">
3 Composite of free text and {#view1#component2}.
4 </component>
5 </operation>

Example: Process code for the setValue action

show
The show action is the opposite of the hide action and will return the component to its original state, making it visible and interactive for end-
user events.

Applies To:
Accordion, Browser, Button, ButtonBox, Calendar, Chart, Checkbox, Clock, Color, Combobox, Console, Container, DataItem, Date, Expander,
ExpanderItem, ExpanderMenu, Form, Grid, Group, Image, Info, Input, Label, List, ListView, Menu, MenuBar, Menu Item, Panel, Radio, Render,
RichText, Slider, TabStrip, Textarea, Toolbar, Tree, XMLEditor,

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="show"/>
3 </operation>

Example: Process code for the show action

Related topics
hide

unbind
The unbind action is used to unbind data that has been bound to a component using the bind operation.

Applies To:
All components where data can be bound

Example

1 <operation name="action" value="#view1">
2 <component name="component1" action="unbind"/>
3 </operation>

Example: Process code for the disable action

Related topics
bind

Methods
This is a reference section about all available component methods that can be used in Process XML language.

There are two ways of using methods, the callMethod operation or by appending .methodName() on an Expression.

Methods can be used to send information or to receive/extract information.

Using methods
As mentioned above there are two ways of using methods. Some methods are available via the callMethod operation, some are available
using the .methodName() and some available via both.

Using callMethod
The callMethod operation allows you to send parameters to a component.

To se an example of such an operation, click here.

Appending .methodName()
When using Expressions you can also use methods.

It might looks like this #view#lvPlaylist.getParam('item'). This method, executed on a listview component called lvPlaylist.

Method types
Methods can be used to either sending information to a component or extracting information that the component might have.

In this reference section all available methods are listed, as well as on information on which components they apply.

activate

XIOS/3 Developer Manual - 2022-06-09 43/164

The activate-method is used to set focus to a component.

Applies To:
Input, ListView

1 <operation name="callMethod" value="#view1#component1">
2 <method name="activate"/>
3 </operation>

Example: Process code for callMethod - activate

adjustVolume
The adjustVolume method is used to adjust the volume by a factor of 10. By sending in a positive integer, for example 1, the sound is
increased by 10 of 100. If a negative integer is send the sound will decrease.

Applies To:
Media

Example:

1 <operation name="callMethod" value="#view1#media1">
2 <method name="adjustVolume">
3 <param type="integer">-1</param>
4 </method>
5 </operation>

Example: Process code for callMethod - adjustVolume

appointmentColor
The appointmentColor method is used to set an color to an appointment in the Calendar component.

There is only a single parameter which defines the RBG color to set.

Applies To:
Calendar

1 <operation name="callMethod" value="#view1#calendar1">
2 <method name="appointmentColor">
3 <param type="string">ff0000</param>
4 </method>
5 </operation>

attach
The attach-method is used to attach views to each other.

The first parameter defines the view to attach. Observe that the view still must be opened using the open operation.

The second parameter defines the position of the attached view. It can be set to "top", "bottom", "right" or "left".

The third parameter defines three offset parameters. The first value is the offset to the top, the second is the offset from the left and the third
value is the stretch offset.

Applies To:
View

1 <operation name="callMethod" value="#view1">
2 <method name="attach">
3 <param type="string">#View1</param>
4 <param type="string">bottom</param>
5 <param type="string">50,0,0</param>
6 </method>
7 </operation>

Example: Process code for callMethod - attach

callFlash
Makes a call to the flash container requesting the result of a specfic method, which is returned. The returned value is most likely a string but
it depends on the flash file.

Applies To:
Flash

1 <alias name="flashValue" value="#view1#Flash1.callFlash("method24")"/>

Example: Process code for callFlash method

changeInterval
Changes the time interval that an hour should be divided to when displayed.

Applies To:
Calendar

1 <operation name="callMethod" value="#view1#calendar1">
2 <method name="changeInterval">
3 <param type="string">5</param>

XIOS/3 Developer Manual - 2022-06-09 44/164

4 </method>
5 </operation>

Example: Process code for callMethod - changeInterval

clear
The clear-method is used to clear the contents of the component.

Applies To:
ComboBox, Textarea

1 <operation name="callMethod" value="#view1#widgetpane1">
2 <method name="clear"/>
3 </operation>

Example: Process code for callMethod - clear

clearContent
The clearContent method is used to clear the contents of the container component.

Applies To:
Container

1 <operation name="callMethod" value="#view1#container1">
2 <method name="clearContent"/>
3 </operation>

Example: Process code for callMethod - clear

clearSearchLines
The clearSearchLines method clears all search result lines in the XMLEditor.

Applies To:
XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="clearSearchLines"/>
3 </operation>

Example: Process code for callMethod - clearSearchLines

copyToClipboard
The copyToClipboard method allows for copying of XML data to the clipboard. It works similarly to the Ctrl+C (Copy) which is initiated by the
end-user.

Applies To:
All components

1 <operation name="callMethod" value="#view">
2 <method name="copyToClipboard">
3 <param type="string">Component1</param>
4 </method>
5 </operation>

Example: Process code for callMethod - copyToClipboard

deleteShape
Will delete to current selected shape in the Editor component.

Applies To:
Editor

1 <operation name="callMethod" value="#PresEd#slideEditor">
2 <method name="deleteShape"/>
3 </operation>

Example: Process code for callMethod - deleteShape

deselect
The deselect method will deselect the selected row inside a component, such as the grid.

Applies To:
Grid

1 <operation name="callMethod" value="#view1#widgetpane1">
2 <method name="deselect"/>
3 </operation>

Example: Process code for callMethod - deselect

XIOS/3 Developer Manual - 2022-06-09 45/164

detach
The detach method is used to detach views for each other.

The example below will detach view #two from view #one.

Applies To:
View

1 <operation name="callMethod" value="#one">
2 <method name="detach">
3 <param type="string">#two</param>
4 </method>
5 </operation>

Example: Process code for callMethod - detach

disableAutoSpellcheck
The disableAutoSpellcheck method is used to disable automatic spellchecking in the RichText component.

Applies To:
RichText

1 <operation name="callMethod" value="#view1#richtext">
2 <method name="disableAutoSpellcheck"/>
3 </operation>

Example: Process code for callMethod - enableAutoSpellcheck

edit
The edit-method is used to rename a document inside, for example, the listview component.

Applies To:
ListView, Tree

1 <operation name="callMethod" value="#view1#listView1">
2 <method name="edit"/>
3 </operation>

Example: Process code for callMethod - edit

enableAutoSpellcheck
The enableAutoSpellcheck method is used to enable automatic spellchecking in the RichText component.

Applies To:
RichText

1 <operation name="callMethod" value="#view1#richtext">
2 <method name="enableAutoSpellcheck"/>
3 </operation>

Example: Process code for callMethod - enableAutoSpellcheck

execCommand
The execCommand method is used to perform a command to a component.

Available commands: cut, paste, copy, undo, redo, selectAll

Applies To:
TextArea, XMLEditor

1 <operation name="callMethod" value="#view1#textarea1">
2 <method name="execCommand">
3 <param type="string">cut</param>
4 </method>
5 </operation>

Example: Process code for callMethod - execCommand

executeCommand
The executeCommand method is used to pass a command to the RichText component.

Available commands are: InsertOrderedList, InsertUnorderedList, redo, selectAll, undo

Applies To:
RichText

1 <operation name="callMethod" value="#viewName#rte1">
2 <method name="executeCommand">
3 <param type="string">insertOrderdList</param>
4 </method>
5 </operation>

Example: Process code for callMethod - executeCommand

XIOS/3 Developer Manual - 2022-06-09 46/164

executeScript
The executeScript method is used to execute a specific JavaScript function that has been included in to the view file.

Applies To:
View

1 <operation name="callMethod" value="#view1">
2 <method name="executeScript">
3 <param type="string">getValues</param>
4 <param type="string">{$dataDoc#/settings/@versionId}</param>
5 </method>
6 </operation>

Example: Process code for callMethod - executeScript

flashTab
The flashTab method is used to create that appearance that a tab is flashing by switching the selected and unselected visual mode of a tab.

The method has three parameters. The first parameter defines the name of the tab (panel component) that will start flashing and is required.
Parameters two and three are optional, where two is the length of the flashing in milliseconds and the third is the speed of the flashing in
milliseconds.

The default time length of the flashing is 2000 ms and the default flash delay is 200 ms.

Applies To:
TabStrip

1 <operation name="callMethod" value="#view1#tabstrip1">
2 <method name="flashTab">
3 <param type="string">examplepanel2</param>
4 <param type="string">3000</param>
5 <param type="string">100</param>
6 </method>
7 </operation>

Example: Process code for callMethod - focus

focus
The focus-method is used to set focus on windows.

Applies To:
View

1 <operation name="callMethod" value="#view1">
2 <method name="focus">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - focus

focusItem
The focusItem method focuses the selection on an item in the listview.

Applies To:
ListView

1 <operation name="callMethod" value="#view1#listview1">
2 <method name="focusItem">
3 <param type="string">{$dataDoc/settings/subscriptions/apprefs/appref[@id='']}</param>
4 <param type="boolean">true</param>
5 </method>
6 </operation>

Example: Process code for callMethod - focusItem

focusSelection
The focusSelection-method is used to set focus on single selection inside the component.

Applies To:
ListView

1 <operation name="callMethod" value="#view1#listview1">
2 <method name="focusSelection">
3 <param type="string">/settings/applicationlist/application[3]</param>
4 </method>
5 </operation>

Example: Process code for callMethod - focus

getCurrentLabel
The getCurrentLabel method retrieves the label of the selected node in the tree component.

Applies To:
Tree

XIOS/3 Developer Manual - 2022-06-09 47/164

1 <alias name="labelOfSelection" value="{#view1#tree1.getCurrentLabel()}"/>

Example: Process code for the getCurrentLabel method

getCurrentPosition
The getCurrentPosition method retrieves the current time position of the playback.

Applies To:
Media

1 <alias name="playbackPosition" value="{#view1#media1.getCurrentPosition()}"/>

Example: Process code for the getCurrentPosition method

getDataLocation
The getDataLocation returns the data that is selected in the component.

Applies To:
Tree

1 <alias name="selection" value="#view1#tree1.getDataLocation()"/>

Example: Process code for the getCurrentLabel method

getDateValue
The getDateValue method returns the date that was clicked in the calendar (clock component)

Value returned is a string as such: 2019-03-05THH:MM:SS+0100

Applies To:
Clock

1 <alias name="selection" value="#view1#clock1.getDateValue()"/>

Example: Process code for the getDateValue method

getDimension
The getDimension method allows you to fetch the height and width of a window or component.

Applies To:
View

1 <alias name="myView" value="#view1"/>
2 <alias name="myViewHeight" value="$myView.getDimension().height"/>
3 <alias name="myViewWidth" value="$myView.getDimension().width"/>
4 <operation name="debug" value="$myViewHeight">alert</operation>
5 <operation name="debug" value="$myViewWidth">alert</operation>

Example: Process code to extract height and width of view window

Related:
setDimension

getEndDate
Retrieves the value of the dc:endDate from the selected appointment.

Applies To:
View

1 <alias name="appointmentEndDate" value="{#view#calendar.getEndDate()}"/>

Example: Process code for the getEndDate method

getEndTime
Retrieves the value of the dc:endTime from the selected appointment.

Applies To:
Calendar

1 <alias name="appointmentEndDate" value="{#view#calendar.getEndTime()}"/>

Example: Process code for the getEndTime method

getLat
Retrieves the latitude value from the selected coordinate.

XIOS/3 Developer Manual - 2022-06-09 48/164

Applies To:
Map

1 <alias name="markerLat" value="{#view#map.getLat()}"/>

Example: Process code for the getLat method

Related Topics:
getLng

getLineBottomMargin
The getLineBottomMargin method is used to read the paragraphs bottom margin.

Applies To:
RichText

1 <alias name="bottomMargin" value="{#view1#richtext1.getLineBottomMargin()}"/>

Example: Process code for getLineBottomMargin method

Related Topics:
getLineTopMargin

getLineTopMargin
The getLineTopMargin method is used to read the paragraphs top margin.

Applies To:
RichText

1 <alias name="topMargin" value="{#view1#richtext1.getLineTopMargin()}"/>

Example: Process code for getLineTopMargin method

Related Topics:
getLineBottomMargin

getLng
Retrieves the longitude value from the selected coordinate.

Applies To:
Map

1 <alias name="markerLng" value="{#view#map.getLng()}"/>

Example: Process code for the getLng method

Related Topics:
getLat

getMapType
Retrieves the map type currently used in the component.

Applies To:
Map

1 <alias name="mapType" value="{#view1#map.getMapType()}"/>

Example: Process code for the getMapType method

getZoom
Retrieves the zoom currently used in the component.

Applies To:
Map

1 <alias name="mapType" value="{#view1#map.getZoom()}"/>

Example: Process code for the getZoom method

getNodePath
The getNodePath method retrieves the full node path of the selection in the Tree component.

Applies To:
Tree

XIOS/3 Developer Manual - 2022-06-09 49/164

1 <alias name="fullPath" value="{#view1#tree1.getNodePath()}"/>

Example: Process code for the getNodePath method

getParam
The getParam method retrieves the value of the named parameter.

Applies To:
ListView

1 <alias name="lengthOfContent" value="#view1#listview1.getParam('keyword')"/>

Example: Process code for the getParam method

getPaste
The getPaste method is used by the Calendar component in order to retrieve clipboard information.

Applies To:
Calendar

1 <alias name="NewEndTime" value="{#view#calendar.getPaste('{$startDate} {$startTime}','{$endDate} {$endTime}','{$newStartDate} {$newStartTime}')}"/>

Example: Process code for the getPaste method

getSelected
Retrieves the XML data bound to the selected component rendered by a container.

Applies To:
Container

1 <alias name="content" value="#view1#container1.getSelected()"/>

Example: Process code for the getSelected method

getSelectedItem
Retrieves the selected item in a listview.

Applies To:
ListView

1 <alias name="content" value="#viewName#componentName.getSelectedItem()"/>

Example: Process code for the getSelectedItem method

getSelectedText
Retrieves the selected text in the component.

Applies To:
RichText

1 <alias name="selectedText" value="#view1#richtext1.getSelectedText()"/>

Example: Process code for getSelectedText method

getSelection
Retrieves the selection in the calendar component.

Applies To:
Calendar

1 <alias name="content" value="#view1#calendar1.getSelection()"/>

Example: Process code for the getSelection method

getSelectionLength
The getSelectionLength method retrieves the length of the content in the component.

Applies To:
Textarea, XMLEditor

1 <alias name="lengthOfContent" value="#view1#textarea1.getSelectionLength()"/>

Example: Process code for the getSelectionLength method

XIOS/3 Developer Manual - 2022-06-09 50/164

getSelectionValue
The getSelectionValue method retrieves the selected value of the content in the component.

Applies To:
Textarea, XMLEditor

1 <alias name="ValueOfTextarea" value="#view1#textarea1.getSelectionValue()"/>

Example: Process code for the getSelectionValue method

getSrcDataLocation
The getSrcDataLocation method retrives the document bound to the component, when regular Expressions might return xlinked documents.

Applies To:
Tree

1 <alias name="dataSrc" value="#view1#tree1.getSrcDataLocation()"/>"

Example: Process code for the getSrcDataLocation method

getStartDate
Retrieves the dc:startDate of the selection.

Applies To:
Calendar

1 <alias name="appointmentStartDate" value="{#view1#calendar1.getStartDate()}"/>

Example: Process code for the getStartDate method

getStartTime
Retrieves the dc:startTime of the selection.

Applies To:
Calendar

1 <alias name="appointmentStartTime" value="{#view1#calendar1.getStartTime()}"/>

Example: Process code for the getStartTime method

getText
Retrieves the content of the text() node.

Applies To:
Plate

1 <alias name="myTextValue" value="{#view1#plate2.getText()}"/>

Example: Process code for the getText method

getUpdateEnabled
The getUpdateEnabled method retrieves the state of the upateEnabled functionality. It returns a boolean value.

Applies To:
XMLEditor

1 <alias name="updateEnabled" value="{#view1#XMLEditor1.getUpdateEnabled()}"/>

Example: Process code for the getUpdateEnabled method

getValue
The getValue method retrieves the value of the content in the component.

Applies To:
Accordion, Browser, ButtonBox, CheckBox, Clock, Color, ComboBox, Date, Grid, Group, Image, Input, ListView, Menu Item Panel, Plate, Radio,
Rating, RichText, Slider, TextArea

1 <alias name="ValueOfTextarea" value="#view1#textarea1.getValue()"/>

Example: Process code for the getValue method

getVolume
The getVolume method returns the volume of the media component as an integer.

XIOS/3 Developer Manual - 2022-06-09 51/164

Applies To:
Media

1 <alias name="mediaVolume" value="{#view1#mediaComponent1.getVolume()}"/>

Example: Process code for the getVolume method

gotoLine
The gotoLine method selects the defined line in the XMLEditor component.

Applies To:
XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="gotoLine">
3 <param>12</param>
4 </method>
5 </operation>

Example: Process code for the gotoLine method

hideColumn
This method is used to hide a visible column in a grid. The parameter sent contains the name of the column to hide.

Applies To:
Grid

1 <operation name="callMethod" value="#view1#grid1">
2 <method name="hideColumn">
3 <param type="string">grid1Firstname</param>
4 </method>
5 </operation>

Example: Process code for callMethod - hideColumn

haveSelection
The haveSelection method is used to check if a listview has a selection. The value returned is a string in the form of 'true' or 'false'.

Applies To:
ListView

1 <alias name="ListViewSelection" value="{#view1#listview1.haveSelection()}"/>

Example: Process code for method haveSelection

insertHyperlink
The insertHyperlink method is used to insert a hyperlink (home:// or http://) in to a richtext component.

The method takes two parameters, both are required. The first parameter determines the name of the link and the second parameter
determines the actual URL.

Applies To:
RichText

1 <operation name="callMethod" value="#Write#richtextWrite">
2 <method name="insertHyperlink">
3 <param type="string">www.corren.se</param>
4 <param type="string">http://www.corren.se</param>
5 </method>
6 </operation>

Example: Process code for method haveSelection

insertImage
The insertImage is used to insert an insert an image in to a component. The image HTTP URL is provided as a parameter.

Applies To:
RichText

1 <operation name="callMethod" value="#view1#richtext1">
2 <method name="insertImage">
3 <param type="string">xios/icons/business/16x16/table.png</param>
4 </method>
5 </operation>

Example: Process code for callMethod - insertImage

insertText
The insertText is used to insert an insert text in to a component. The text is provided as a parameter.

Applies To:
RichText

XIOS/3 Developer Manual - 2022-06-09 52/164

1 <operation name="callMethod" value="#view1#richtext1">
2 <method name="insertText">
3 <param type="string">Here is the text</param>
4 </method>
5 </operation>

Example: Process code for callMethod - insertImage

lineNumbers
The lineNumbers method is used to either show or hide the line numbers in the XMLEditor.

Applies To:
XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="lineNumbers">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - focus

maximize
The maximize method is used to maximize windows.

Applies To:
View

1 <operation name="callMethod" value="#{!#@name}">
2 <method name="maximize"/>
3 </operation>

Example: Process code for callMethod - maximize

minimize
The minimize method is used to minimize windows.

Applies To:
View

1 <operation name="callMethod" value="#{!#@name}">
2 <method name="minimize"/>
3 </operation>

Example: Process code for callMethod - minimize

modStyle
The modStyle method is used to insert CSS styles in to components dealing with rich text.

The first parameter defines the name of the style parameter. Available values are "fontFamily", "fontWeight", "fontStyle", "fontSize",
"textAlign"

The second parameter defined the value of the style parameter. This is different for every value in parameter one.

Applies To:
RichText

1 <operation name="callMethod" value="#view1#richText1">
2 <method name="modStyle">
3 <param type="string">fontWeight</param>
4 <param type="string">normal</param>
5 </method>
6 </operation>

Example: Process code for callMethod - modStyle

navigateUp
The navigateUp-method is used to navigate the parent of the current selection in the tree component.

Applies To:
Tree

1 <operation name="callMethod" value="#view1#Tree1">
2 <method name="navigateUp"/>
3 </operation>

Example: Process code for callMethod - navigateUp

next
The next method is used start playing the next item in the playlist.

Applies To:
Media

XIOS/3 Developer Manual - 2022-06-09 53/164

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="next"/>
3 </operation>

Example: Process code for callMethod - next

nodeExpanded
The nodeExpanded method is used to determine if the selected node is expanded or not. It will return true or false.

Applies To:
Tree

1 <operation name="decision">
2 <when test="'{#view1#Tree1.nodeExpanded()}'='true'" step="20"/>
3 <otherwise step="21"/>
4 </operation>

Example: Process code for callMethod - nodeExpanded

pasteFromClipboard
The pasteFromClipboard method allows for paste of XML data from the clipboard. It works similarly to the Ctrl+V (Paste) which is initiated by
the end-user.

Applies To:
All components

1 <operation name="callMethod" value="#view">
2 <method name="pasteFromClipboard">
3 <param type="string">Component1</param>
4 </method>
5 </operation>

Example: Process code for callMethod - pasteFromClipboard

pause
The pause method is used to initiate a pause state for the media component.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="pause"/>
3 </operation>

Example: Process code for callMethod - pause

play
The play method is used to initiate a play state for the media component.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="play"/>
3 </operation>

Example: Process code for callMethod - play

previous
The previous method is used start playing the previous item in the playlist.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="previous"/>
3 </operation>

Example: Process code for callMethod - previous

print
The print method is used to print out a document.

Applies To:
Editor, RichText

1 <operation name="callMethod" value="#view1#editor1">
2 <method name="print"/>
3 </operation>

Example: Process code for callMethod - print

XIOS/3 Developer Manual - 2022-06-09 54/164

printPresentation
The printPresentation method is used to print a Editor component document.

Applies To:
Editor

1 <operation name="callMethod" value="#view1#editor1">
2 <method name="printPresentation" />
3 </operation>

Example: Process code for callMethod - print

release
The release-method is used to simulate the release command on components.

Applies To:
Button, ButtonBox

1 <operation name="callMethod" value="#view1#button1">
2 <method name="release"/>
3 </operation>

Example: Process code for callMethod - release

releaseEnter
The releaseEnter-method simulates the release of the Enter-button.

Applies To:
Textarea, XMLEditor

1 <operation name="callMethod" value="#view1#component1">
2 <method name="releaseEnter"/>
3 </operation>

Example: Process code for callMethod - releaseEnter

removeList
The removeList is used to remove a selected list in the RichText component.

Applies To:
RichText

1 <operation name="callMethod" value="#view1#richtext">
2 <method name="removeList"/>
3 </operation>

Example: Process code for callMethod - removeList

repeat
The repeat method is used to initiate a repeat state for the media component. The current playback will loop until aborted.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="repeat"/>
3 </operation>

Example: Process code for callMethod - repeat

resetSelection
The resetSelection method is used to reset the selecion in a component.

Applies To:
List, ListView

1 <operation name="callMethod" value="#viewName#componentName">
2 <method name="resetSelection"/>
3 </operation>

Example: Process code for callMethod - release

restore
The restore method is used to restore a view (application) window to the desktop.

Applies To:
View

1 <operation name="callMethod" value="#view1">
2 <method name="restore"/>

XIOS/3 Developer Manual - 2022-06-09 55/164

3 </operation>

Example: Process code for callMethod - release

restoreAppDlg
Restores the application window from the application toolbar to the desktop.

Applies To:
View

1 <operation name="callMethod" value="#{!#@name}">
2 <method name="restoreAppDlg"/>
3 </operation>

Example: Process code for callMethod - restoreAppDlg

scale
Scales the VML/SVG rendering in the editor component.

Accepted parameter value is decimal value (using dot) such as "0.5" or "4.0". It can also be set to "auto" which will allow for autoscaling to fit
editor component size.

Applies To:
Editor

1 <operation name="callMethod" value="#PresEd#slideEditor">
2 <method name="scale">
3 <param type="string">0.5</param>
4 </method>
5 </operation>

Example: Process code for callMethod - scale

search
The search method allows you to search withing an XML document.

Applies To:
XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="search">
3 <param type="string">XIOS</param> <!--Match Whole Word-->
4 <param type="Integer">0</param> <!--Direction (0 or -1) -->
5 <param type="Boolean">1</param> <!--Match Whole Word-->
6 <param type="Boolean">0</param> <!--Match Case-->
7 </method>
8 </operation>

Example: Process code for callMethod - search

searchMap
The searchMap method allows you to search for a location in a map.

Applies To:
Map

1 <operation name="callMethod" value="#view1#map">
2 <method name="searchMap">
3 <param type="string">{#view1#searchField}</param>
4 </method>
5 </operation>

Example: Process code for callMethod - searchMap

selectAll
The selectAll method is used to select all rows.

Applies To:

Grid

1 <operation name="callMethod" value="#view1#grid1">
2 <method name="selectAll">
3 <param type="string">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - selectAll

selectFirstRow
The selectFirstRow method is used to set selection to the first item in the grid

Applies To:

Grid

1 <operation name="callMethod" value="#view1#grid1">

XIOS/3 Developer Manual - 2022-06-09 56/164

2 <method name="selectFirstRow"/>
3 </operation>

Example: Process code for callMethod - selectFirstRow

selectLastRow
The selectLastRow method is used to set selection to the last item in the grid

Applies To:
Grid

1 <operation name="callMethod" value="#view1#grid1">
2 <method name="selectLastRow"/>
3 </operation>

Example: Process code for callMethod - selectLastRow

selectTab
The selectTab-method is used to set which tab is to be shown in the tabStrip from the process language.

Applies To:
TabStrip

1 <operation name="callMethod" value="#view1#tabStrip1">
2 <method name="selectTab">
3 <param type="string">tabClients</param>
4 </method>
5 </operation>

Example: Process code for callMethod - selectTab

setBulletType
The setBulletType method is used to bullet types in components that utilize rich text.

The first parameter defines is the bullets should be removed. It can be set to "true" or "false". Default value is "false".

The second parameter decides the appearance of the bullets. It can be set to "disc", "square" or "circle". Default value is "circle".

The third parameter defines the position of the list. It can be set to "none", "inside" or "outside". The default value is "none".

The fourth parameter defines the color of the text and bullets. It can be set to any Hex-decimal value. The default color is black.

The fifth parameter is used to set a background image for the list by providing a URL to the image.

The sixth parameter is used to set the spacing between the list items.

Applies To:
Editor

1 <operation name="callMethod" value="#view1#richtext1">
2 <method name="setBulletType">
3 <param type="string">false</param>
4 <param type="string">square</param>
5 <param type="string"></param>
6 <param type="string">#000000</param>
7 <param type="string"></param>
8 <param type="string"></param>
9 </method>

10 </operation>

Example: Process code for callMethod - setBulletType

Removing lists:

1 <operation name="callMethod" value="#view1#richtext1">
2 <method name="setBulletType">
3 <param type="string">true</param>
4 <param type="string">none</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setBulletType

setDimension
The setDimension method is used to change the dimension (width and height) of a view (application gui).

Applies To:
View

1 <operation name="callMethod" value="#view1">
2 <method name="setDimension">
3 <param type="integer">100</param>
4 <param type="integer">200</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setDimension

Related:
getDimension

XIOS/3 Developer Manual - 2022-06-09 57/164

setEditableMode
The setEditableMode method is used to enable or disable editing of the component.

The parameter passed can be set to either true (editable) or false (not editable).

Applies To:
RichText, XMLEditor

1 <operation name="callMethod" value="#view1#xmleditor1">
2 <method name="setEditableMode">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setEditableMode

setFont
The setFont methods will set a new font on the component. The three parameters sent are Font-family, Font-Style and Font-Size.

Applies To:
Console, Textarea

1 <operation name="callMethod" value="#view1#Console1">
2 <method name="setFont">
3 <param type="string">Lucida Console</param>
4 <param type="string">normal</param>
5 <param type="string">12pt</param>
6 </method>
7 </operation>

Example: Process code for callMethod - setFont

setIcon
The setIcon method allows the developer to set a new icon for a view window, by passing a parameter containing the URL to the new icon.

The method also allows a second parameter which regulates image scaling. The value passed can be either "scale" or left empty (default).
This parameter can only be passed when using it with View's, not with Menu Item's.

Applies To:
ButtonBox, Menu Item, View

1 <operation name="callMethod" value="#view1">
2 <method name="setIcon">
3 <param type="string">xios/icons/applications/16x16/add.png</param>
4 <param type="string">scale</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setIcon

setImage
The setImage-method allows the developer to set a background image on a view. This method is only applicable on view-files.

Applies To:
View

1 <operation name="callMethod" value="#view1">
2 <method name="setImage">
3 <param type="string">{#viewName#inputComponent}</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setImage

setLabel
The setLabel method allows the developer to change the label set for input fields.

Applies To:
Input

1 <operation name="callMethod" value="#view1#input2">
2 <method name="setLabel">
3 <param type="string">New Label</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setLabel

setLineMargin
The setLineMargin method allows the developer to change the line height in a richtext component.

The firstparameter defines the top margin and the second parameter defines the bottom margin.

Applies To:
RichText

XIOS/3 Developer Manual - 2022-06-09 58/164

1 <operation name="callMethod" value="#view1#component1">
2 <method name="setLineMargin">
3 <param type="string">0</param>
4 <param type="string">0</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setLineMargin

setLineIndent
The setLineIndent method allows the developer to set an indentation in pixels in a richtext component.

The first parameter defined the left indentation and the second parameter defined the right indentation. If no text is selected then the
indentation will be set for the entire component (all text).

Applies To:
RichText

1 <operation name="callMethod" value="#view1#component1">
2 <method name="setLineIndent">
3 <param type="string">10</param>
4 <param type="string">0</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setLineIndent

setLook
The setLook method is used to change the appearance of the widgetpane component.

Applies To:
WidgetPane

1 <operation name="callMethod" value="#Desktop#deskWidgets">
2 <method name="setLook">
3 <param type="string">{#SettingsCopy#/settings/widgets/@sidebar}</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setLook

setMode
The setMode method is used to set the play mode of the media component. It can be set to either "audio" or "video".

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="setMode">
3 <param type="string">audio</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setMode

setMute
The setMute method is used to mute the sound of the media component. It can be set to either true or false.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="setMute">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setMute

setParam
This is used on the listview-component to send a parameter to the XSLT. In XSLT you use the lv:getParam-function to receive the parameter.

Applies To:
ListView, Render

1 <operation name="callMethod" value="#viewName#componentName">
2 <method name="setParam">
3 <param type="string">company</param>
4 <param type="string">XIOS/3</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setParam

setRange
Sets the time range of the Calendar component.

XIOS/3 Developer Manual - 2022-06-09 59/164

Applies To:
Calendar

1 <operation name="callMethod" value="#view1#calendar1">
2 <method name="setRange">
3 <param type="string">07:00</param>
4 <param type="string">19:00</param>
5 </method>
6 </operation>

Example: Process XML code for callMethod - setRange

setSelect
The setSelect method is used to select a component, but has the option to decide if it should fire a Select event.

Applies To:
Menu Item

1 <operation name="callMethod" value="#view1#menuItem2">
2 <method name="setSelect">
3 <param type="string">false</param>
4 </method>
5 </operation>

Example: Process XML code for callMethod - setSelect

setSelectedDate
The setSelectedDate method is used to selected a date in a calendar component, making it stand out from the non selected.

Applies To:
Calendar

1 <operation name="callMethod" value="#view1#calendar1">
2 <method name="setSelectedDate">
3 <param type="string">2019-03-05THH:MM:SS+0100</param>
4 </method>
5 </operation>

Example: Process XML code for callMethod - setSelectedDate

setSelectionEx
The setSelectionEx method will set the selection expression in the tree component.

Applies To:
Tree

1 <operation name="callMethod" value="#view1#Tree1">
2 <method name="setSelectionEx">
3 <param type="string">/item[1]/p[2]</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setSelectionEx

setSelectionRoot
The setSelectionRoot method will set selection to the root.

Applies To:
Tree

1 <operation name="callMethod" value="#view1#Tree1">
2 <method name="setSelectionRoot">
3 <param type="string">/fs:folder[]</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setSelectionRoot

setSkin
The setSkin method is used to set XSL skin renderers for the clock component when in calendar mode.

Applies To:
Clock

1 <operation name="callMethod" value="#view#clCalendar">
2 <method name="setSkin">
3 <param type="string">apps/widgets/layout/cal_binder.xsl</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setSkin

setTitle
The setTitle method is used to set a title and/or subtitle to the view or the title of a panel.

XIOS/3 Developer Manual - 2022-06-09 60/164

The subtitle can only be set for views. Additionally you can only only send a second parameter which will just update the subtitle. If both a
title and subtitle are used the "-" delimiter will be added automatically.

Applies To:
Panel, View

1 <operation name="callMethod" value="#view1">
2 <method name="setTitle">
3 <param type="string">Application Name</param>
4 <param type="string">Subtitle Text</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setTitle

setType
Sets the display type of the calendar component.

Applies To:
Calendar

1 <operation name="callMethod" value="#Calendar#Calendar">
2 <method name="setType">
3 <param type="string">7week</param>
4 <param type="boolean">true</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setType

setUpdateEnabled
The setUpdateEnabled method set the value of the UpdateEnabled functionality. The parameter is either true or false.

Applies To:
XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="setUpdateEnabled">
3 <param>false</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setParam

setValue
This method will set a value to a component.

Applies To:
Accordion, Browser, Button, Color, ComboBox, Editor, Flash, Group, Image, Input, Label, List, Media, Menu, Radio, Rating, Slider

1 <operation name="callMethod" value="#viewName#componentName">
2 <method name="setValue">
3 <param type="string">tasks</param>
4 <param type="boolean">true</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setValue

When using the setValue method for the media component you can set the position of the playback in seconds.

1 <operation name="callMethod" value="#view1#mediaComponent">
2 <method name="setValue">
3 <param type="integer">90</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setValue - Will set position to 1:30 minutes into the playback

While changing the value of the SWF-file to play in the Flash component then the first (and only) parameter should contain the http-url to the
file.

1 <operation name="callMethod" value="#view1#flash1">
2 <method name="setValue">
3 <param type="string">http://www.example.com/file.swf</param>
4 </method>
5 </operation>

Example: Example showing how to change the swf-file displayed in the Flash component

setView
The setView-method is used to change XSLT files in render components while keeping the data bound to the component.

The change is made by replacing the name of the file (excluding the file type suffix), furthermore they should be contained within the same
folder.

Applies To:
ListView, Render

1 <operation name="callMethod" value="#view1#listview1">

XIOS/3 Developer Manual - 2022-06-09 61/164

2 <method name="setView">
3 <param type="string">documents_list</param>
4 <param type="boolean">true</param>
5 </method>
6 </operation>

Example: Process code for callMethod - setView

setVolume
The setVolume method is used to set the sound of the media component. It can be set to a value between 0-100.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="setVolume">
3 <param type="integer">80</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setMute

setWeekStartDay
Sets the first day of the week for the calendar component. The value can be either Monday or Sunday, where Monday is default.

Applies To:
Calendar

1 <operation name="callMethod" value="#view1#calendar1">
2 <method name="setWeekStartDay">
3 <param type="string">Monday</param>
4 </method>
5 </operation>

Example: Process code for callMethod - setWeekStartDay

showColumn
This method is used to show a hidden column in a grid. The parameter sent contains the name of the column to display.

Applies To:
Grid

1 <operation name="callMethod" value="#view1#grid1">
2 <method name="showColumn">
3 <param type="string">grid1Firstname</param>
4 </method>
5 </operation>

Example: Process code for callMethod - showColumn

showControls
The showControls method is used to define if controls should be visible for the component.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="showControls">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - showControls

shuffle
The shuffle method is used to initiate a shuffle state for the media component. Plays items in playlist in a random mode.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="shuffle">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - shuffle

sortColumn
This method is used to define how a grid should be sorted. The first parameter is the column name and the second parameter is the type or
sorting to perform; ascending or descending.

Applies To:
Grid

XIOS/3 Developer Manual - 2022-06-09 62/164

1 <operation name="callMethod" value="#view1#grid1">
2 <method name="sortColumn">
3 <param type="string">grid1Firstname</param>
4 <param type="string">ascending</param>
5 </method>
6 </operation>

Example: Process code for callMethod - sortColumn

stop
The stop method is used to initiate a stop state for the media component.

Applies To:
Media

1 <operation name="callMethod" value="#view1#mediaComponent1">
2 <method name="stop"/>
3 </operation>

Example: Process code for callMethod - stop

takeEnter
The takeEnter-method simulates the press of the Enter button. This makes it possible to have focus on several components.

Applies To:
Textarea, XMLEditor

1 <operation name="callMethod" value="$appComp">
2 <method name="takeEnter">
3 <param type="string">#FR#findNext</param>
4 </method>
5 </operation>

Example: Process code for callMethod - update

toggleCheckable
Toggles the mode of the menu Item to true or false. It simulates a selection made on the component.

Applies To:
Menu Item

1 <operation name="callMethod" value="#view1#mItemComments">
2 <method name="toggleCheckable">
3 <param type="boolean">true</param>
4 </method>
5 </operation>

Example: Process code for callMethod - toggleCheckable

toggleNode
The toggleNode-method toggles a node in the tree component.

Applies To:
Tree

1 <operation name="callMethod" value="#view1#Tree1">
2 <method name="toggleNode"/>
3 </operation>

Example: Process code for callMethod - update

update
The update-method updates the data bound to a component.

In the case of the Panel component it can be used to update the title of the panel (if such exists).

Applies To:
Grid, ListView, Panel

1 <operation name="callMethod" value="#viewName#Component">
2 <method name="update"/>
3 </operation>

Example: Process code for callMethod - update

updateData
Makes an update to the data document bound to the component.

Applies To:
XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="updateData">
3 <param>true</param>

XIOS/3 Developer Manual - 2022-06-09 63/164

4 </method>
5 </operation>

Example: Process code for callMethod - updateData

updateRedraw
The updateRedraw-method redraws the component thus applying new data (or parameters) that might have been passed to it.

Applies To:
ListView, Render

1 <operation name="callMethod" value="#viewName#componentName">
2 <method name="updateRedraw"/>
3 </operation>

Example: Process code for callMethod - updateRedraw

wordWrap
The wordWrap-method methods defines if what type of word-wrap should be used. There are three options; hard, soft or off.

Applies To:
RichText, XMLEditor

1 <operation name="callMethod" value="#view1#XMLEditor1">
2 <method name="wordWrap">
3 <param type="string">hard</param>
4 </method>
5 </operation>

Example: Process code for callMethod - wordWrap

Rules
The rule element is used to define how a data driven component should interpret the bound data. Every component uses their own rules but
have rule element and match attribute in common with each other. The matching is done by using Expressions to match bound data

Observe that some components actually require rule elements in order to display the data, such as the Tree component.

Since rules are handled by the components themselves the data is left unaltered thus several component can show the same data is several
different ways and changes in one are propagated to all the components and displayed accordingly.

Note: If you are trying to match elements or attributes which use namespaces then you might need to declare that namespace on the
element. If you do not then the rule matching might not fail, and no error messages might be displayed.

Applies To:
Clock, ComboBox, Container, DataItem, Form, Grid, Info, Tree

Example:

1 <combobox name="CB" width="150" height="20" editable="false">
2 <plate name="CBplate" height="30">
3 <rule match="component">
4 <item>{@name}</item>
5 </rule>
6 </plate>
7 </combobox>

Example: Rule in Combobox component

1 <components>
2 <component name="Accordion" tag="Component" group="UI XML">
3 <documentation>
4 <description>Accordion description.</description>
5 </documentation>
6 </component>
7 <component name="Browser" tag="Component" group="UI XML">
8 <documentation>
9 <description>Browser description.</description>

10 </documentation>
11 </component>
12 <component name="Button" tag="Component" group="UI XML">
13 <documentation>
14 <description>Button description.</description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for ComboBox Example

Look and Feel
In UI XML you as a developer is able to make use of CSS (Cascading Style Sheets) to override the current style that apply to components using
the style attribute which is available on all components. CSS is written by using the notation key:value; repeatedly.

In XSLT driven components, such as the ListView or Render you are able to use CSS classes. These can be created inside an external CSS file
which is included in your applications view file, using the style element. There is also support for inline CSS which means that you can write
your CSS directly in the view file. If you have a small application or a widget with some CSS it is recommended that you use inline CSS since it
reduces the number of requests made to the server, making your application load faster. Have this in mind when creating widgets since they
often are loaded on system boot up.

If a href attribute is not supplied the inline CSS will be used. If however a href attribute is supplied there inline CSS will be ignored and the
external CSS will be used instead.

For those that are not familiar with CSS classes they are applied on HTML elements (in XSLT files) using a class attribute.

XIOS/3 Developer Manual - 2022-06-09 64/164

Attributes
Optional attributes

Name Type Values Description
href string URL The path to the external CSS file

to use.

Example 1: External CSS

1 <view name="view1" title="Hello World" version="1.0" height="400" width="400" icon="icon://earth">
2 <style href="home://Documents/helloWorld.css"/>
3
4 <panel height="auto" width="auto">
5 <render height="auto" width="auto" href="home://Documents/render.xsl"/>
6 </panel>
7 </view>/>

Example: This view file is importing the CSS file making it available to the render component where the classes are used

1 .bold {
2 font-weight: bold;
3 }
4 .headlineBlue {
5 font-weight: bold;
6 font-size: 16px;
7 color: blue;
8 }

Example: This is the CSS file that we will import

Example 2: Inline CSS

1 <view name="view1" title="Hello World" version="1.0" height="400" width="400" icon="xios/icons/network/16x16/earth.png">
2 <style>
3 .bold {
4 font-weight: bold;
5 }
6
7 .headlineBlue {
8 font-weight: bold;
9 font-size: 16px;

10 color: blue;
11 }
12 </style>
13
14 <panel height="auto" width="auto">
15 <render height="auto" width="auto" href="home://Documents/render.xsl"/>
16 </panel>
17 </view>/>

Example: Using inline CSS

Process Development
In this section we will cover everything about Process Development and is divided in to sections of relevance.

Process XML is the logic part of XIOS/3 Application Development. When considering the MVC design pattern, Process XML equals to the
Control.

What this section covers

This part of the documentation will cover all parts of Process XML. It starts with a section about aliases, which are XIOS/3 equivalents of
variables. We cover how they are constructed, how to use them and what system aliases are available.

The Event Model, which is the foundation of end-user interactivity with components as well as with the XIOS/3 system. The section provides
you with examples of binding components to each other as well as how to work with triggers and selections. In this section is also an event
section which provides information about View and System events.

There is also a section explaining what Steps are, how to use them and how they should be interpreted. Since all operations are children of
steps this is an important section to understand.

When trying to understand application logic, our section on Expressions is very important. It contains key information about how components
can interact and also includes examples.

Overall Structure
The sections covers the corner stones and the construction of the Process XML language. First the root element, process, and how to use it.
We then explain how trigger elements work, what their purpose is and how events are captured.

A detailed section about the step element where and a short primer on the operation element is also provided.

An extensive section about Aliases explaining what they are, how they are used as well as what other purposes they can be used for. The
Alias section contains two chapters; Alias Types and System Aliases.

Process
The process element is the root element for all process files (Process XML files).

Usage

This element has two required attributes, the name attribute which must be unique within the application package and the version attribute
which refers to which Process XML language version is used. The reason why the name attribute must be unique is because it is used as a
identifier and that two files with the same name can't be active at the same time. Like with the view element there are author and description
attributes, in this case used only for internal purposes.

Attributes
Required Attributes

XIOS/3 Developer Manual - 2022-06-09 65/164

Name Type Values Description
name string Any string value The name of your process file
version enumeration 1.0 File version (personal use)

Optional attributes

Name Type Values Description
author string Any string value Author of the file
description string Any string value File description

Triggers
The event listeners are used to set up a event catcher; so when interaction is made in the view file (UI XML) these listeners will be activated
and then execute a specified step and all operations inside that step.

These elements are child elements of the process element.

Events can be made by the user in the form of component events, which are made when the user interacts with components. Users can also
induce so called application events by using keyboard shortcuts while having he application selected.

There are also system events which are made by the XIOS/3 system and are not application specific.

Attributes

Required attributes

Name Type Values Description
event enumeration predefined event label Name of the event to listen for

from the lists of
step string Any string value Step id to execute

Optional attributes

Name Type Values Description
component string Any string value Name of component making

event
communicator string Any string value Name of communicator
view string Any string value Name of view file where the

event is originating from

Available Events

Component Events, System Events, View Events

Syntax and Examples
Syntax

1 <trigger view="[string]" component="[string]" event="[enumeration]" step="[string]"/>

Example

1 <?xml version="1.0"?>
2 <process name="calculator" description="Main process file for calculator">
3 <trigger view="calculator" component="btn_Sum" event="Select" step="Summerize"/>
4 <trigger view="calculator" component="btn_Add" event="Select" step="Addition"/>
5 <trigger view="calculator" event="Ctrl+A" step="Addition"/>
6
7 <step id="Addition" name="Perform addition">
8 ...
9 </step>

10 </process>

Related Topics

Steps
Steps are an important part of XIOS/3 Application Development. They act as logic clusters since they can contain several operations. There are
some simple rules and guidelines when it comes to steps. They are do not forget to have a step id called 1 and do not forget that a step id
must be unique in a Process XML file.

You can easily navigate from one step to another by using operations such as call or decision.

When opening steps you can also provide the operation number to which you would like to start execution from. Se example at the bottom.

Attributes

Required Attributes

Name Type Values Description
id string Any string value A step unique identifier
name string Any string value An optional name which can act

as a description for the step

Optional Attributes

Name Type Values Description
error string Any string value Id of step to call when error

occurs while processing step

XIOS/3 Developer Manual - 2022-06-09 66/164

success string Any string value Id of step to call when step is
complated successfully

Syntax

1 <step id="identifier" name="string">
2 <operation name="enumeration" value="expression|string"/>
3 </step>

Example

1 <?xml version="1.0"?>
2 <process name="applicationName" description="Logic for applicationName" author="XIOS/3">
3 <step id="1" name="Initiate Application">
4 <operation name="open" value="home://Examples/view1.xml"/>
5 <operation name="call" value="Config"/>
6 <operation name="call" value="2:2"/>
7 </step>
8
9 <step id="2" name="Alert Values">

10 <operation name="debug" value="$pi">alert:plain</operation>
11 <operation name="debug" value="$mediaplayerPath">alert:plain</operation>
12 </step>
13
14 <step id="Config" name="Configure Application" sucess="2" error="2">
15 <alias name="pi" value="3.14" model="global"/>
16 <alias name="mediaplayerPath" value="apps/mediaplayer/mediaplayer.xml" model="global"/>
17 </step>
18 </process>

Line 01-02

The first two lines contain the XML Processing Instruction on the first line and then the process element on the second row. The process
element is the root element of every Process XML file.

Line 03-07

Our first step element must have the id value 1. The reason why we will set it to 1 is because it is the default. When opening process files and
not supplying an id to start it will assume that you want to start with step 1. We have named our step appropriately "Initiate Application".

Our first operation is open, which will open our view file located at a fictitious path. After it has been opened, we move to our next operation
which is a call operation. This means that it will start another step, in this case a step called Config, which starts at line 13. The third
operation in step 1 will call on step 2 and start executing all operations starting with the second operation.

So the logic is that is should open a file called view1.xml, then call on a step called Config and then finally call step 2 and start executing from
operation 2.

Line 09-12

This step is called 2 and it will, as its name attribute implies, alert our values. When we called this step we added information that we want to
execute all operations starting from the second, using the following information; (2:2). This step will thus only alert (JavaScript style) our
second alias value using the debug operation. The first will be ignored.

As you can see we use the variables $pi and $mediaplayerPath, which are not set until the Config step. However since we call the Config step
before this (2) they are available. If they were not they would have no value.

Line 13-16

Our last step is the Config step; which as explained earlier is called before step 2 since we need the aliases that are set in the Config step.
Here we simple use alias elements and set their name and value. The first we will name pi and set its value to 3.14, and then the
mediaplayerPath alias which will be set as an URL. Both of the aliases have an attribute called model; this is set to global since we want to
ensure that these are available in every step in the process file.

Aliases
Aliases are powerful and flexible equivalents to variables and are used in the Process XML language. It is a reference to a value or an XML
node set.

Usage

With aliases you can store strings, integers, paths and XML data. They are global in scope by default, which means that they are available to
all steps in the process XML file. There is also support for local scope, which makes the information stored in the alias only available in a single
step.

Alias are also used to open files from the file system and can be used to create new XML node sets.

An alias is an Event Object that is either a document or a string value. If it is a document then if would consists of three parts; data, xpath and
selection. (see Event Object in Event Model section).

The alias element has three attributes. Here the name attribute defines the name of the attribute, which is used when calling on the alias. An
alias is available using a dollarsign followed by the value of the name attribute. Keep in mind that aliases can be overwritten by defining them
again using another value.

When using the alias to store information something must be provided in the value attribute or in the case that the model attribute is set to
define, in the value child element. Besides supporting integers and strings alias can also support XML data which is provided using
Expressions.

Model defines how the system should interpret your alias. If it is a value (integer or string) or if it contains XML data. Here you should note
that is the alias contains XML data and the model is set to value that it will convert the data in to a string and omit all elements, leaving only
the text() nodes. As we mentioned earlier alias can use global or local scope. This might induce the need to make local scope aliases in to
global, which is done by setting the model to global.

There are several model options that are not used to when storing information, but instead to make the system execute an action. Here the
model="new" is used to create a new XML node set that can be used temporarily until it is saved. Using the model="open" will display an
"Open file" modal dialogue so that the end-user can select a file. Parameters can also be provided when opening files, which enables the
developer to rename the buttons visible to the end-user and also what mime-type that can be selected. The model="folder" works like the
model="open" but will instead allow the end-user to select a folder. Note that when opening an XML document the entire document will be
available, but when opening something else (i.e. image file) only meta data will be available. When opening a folder you will only gain a string

XIOS/3 Developer Manual - 2022-06-09 67/164

(the path) to the folder selected in the folder selector.

Using the model="define" you can define the base and selection of the data.

When a document is referenced to in XIOS/3 the system will begin to transaction handle the file. If you want this feature to be turned off then
set the model attribute to "local". Observe that this must be declared the first the document is included. An included document cannot be
"converted" to a local document. Advantages that model local offers are that less server load and bandwidth are used.

Attributes

Name Type Values Description
name string Any string value The name of the alias
value string string, integer, Expression Decides what the alias will

contain
model enumeration data, global, value, newsilent,

new, open, folder, define, browse,
local

How the alias should be
interpreted by the system

Syntax and Examples

1 <alias name="[string]" value="[string|integer|expression]" model="[enumeration]/>

Example: Syntax for a common alias.

1 <alias name="myXMLalias" value="{xml(#view1#component1)}"/>

Example: This will evalute the expression but will keep it as XML data.

1 <alias name="dataDoc" model="open">
2 <dialog title="Open" folder="home://Documents">
3 <label name="ok">Open File</label>
4 <label name="cancel">Cancel</label>
5 <type mime="text/xml"/>
6 <type mime="text/plain"/>
7 </dialog>
8 </alias>
9

Example: Opening a file.

1 <alias name="dataDoc" model="folder">
2 <dialog title="Open" folder="home://Documents">
3 <label name="ok">Select Folder</label>
4 <label name="cancel">Cancel</label>
5 <label name="createFolder">Create Folder</label>
6 <type mime="text/xml"/>
7 </dialog>
8 </alias>
9

Example: Selecting a folder.

1 <alias name="tmpSelection" model="define">
2 <document>#tmp1</document>
3 <base>/components[1]</base>
4 <selection>
5 <item select="/components[1]/component[2]"/>
6 <item select="/components[1]/component[3]"/>
7 <item select="/components[1]/component[5]"/>
8 </selection>
9 </alias>

Example: Alias using model define.

1 <alias name="targetFile" model="browse">
2 <dialog title="Select Shortcut Target">
3 <label name="ok">Select</label>
4 <label name="cancel">Cancel</label>
5 <type mime="text/xml"/>
6 </dialog>
7 </alias>

Example: Alias model browse allows you to select any file or folder in the filesystem which then becomes available in the defined alias.

Alias Types
Common Use
The code below will hold XML data that is temporarily stored in the trigger. The reason that you might want to store your trigger-value is
because the trigger constantly changes. A global variables will be created and the value will be available in all steps.

1 <alias name="selected" value="!" model="data"/>
2 <operation name="debug" value="$selected">alert</operation>

Example: Getting the selection data in the trigger

Examples

data
"data" will set the data document and selection (if any exists) of the reference document. It is the default model used.

1 <alias name="LvSelection" value="!" model="data"/>

Example: Alias with mode set to data
XIOS/3 Developer Manual - 2022-06-09 68/164

global
"global" will make the alias available globally. The indented use for this is when dealing with local aliases set by parameters using the call
operation.

1 <alias name="DataDoc" value="!" model="global"/>

Example: Alias with model set to global

local
"local" is used to create non-transactioned temporary documents. This means that the XIOS/3 TransactionManager will not be used.

new
"new" is used to create a new temporary data document on the fly by adding the data document as child elements of the alias element. It can
be saved.

1
2 <alias name="DataDoc" model="new">
3 <clients/>
4 </alias>

Example: Alias with model set to new

newsilent
"newsilent" is used to create a new temporary data document, without notifying the user about the procedure.

1
2 <alias name="SaveData" model="newsilent">
3 <mydata/>
4 </alias>

Example: Alias with model set to newsilent

string
"string" will allow the alias text to be handled as a string. Thus a number of instructions can be performed on the string value such as regular
expressions and replacing of substrings.

In the above example the alias $URLstring will contain a string that looks like a URL. Our second alias $URL will contain a data document of
the file.

value
"value" will convert the reference to a string (omitting the XML).

1 <alias name="CompanyName" value="{#view1#component1}" model="value"/>

Example: Alias with model set to value

System Aliases
In XIOS/3 there are some alises that are implicit (predefined) and can be used directly in the Process XML language without the need to define
a value to them. Some retrieve information directly from the user computer, such as time and date. These are reserved and cannot be
overwritten.

date
The date alias will return the current date of the user running XIOS/3.

1 <operation name="debug" value="$date">alert</operation>

Example: 2007-12-13

time
The time alias will return the local time of the user running XIOS/3.

1 <operation name="debug" value="$time">alert</operation>

Example: 11:19

milliseconds
The tm alias will return the number of milliseconds from January 1, 1970 GMT as an integer.

This alias is very useful when you must create a unique name.

To make $tm work first place it inside a variable. Then when using the new alias always place it inside curley brackets.

1
2 <alias name="ctm" value="$tm"/>
3 <operation name="debug" value="{$ctm}">alert</operation>

Example: 1197541185125

widget
This alias contains the widget settings of the widget using it. The result will be displayed in XML data where the root is atom:entry. Note that if

XIOS/3 Developer Manual - 2022-06-09 69/164

the widget is not defined in the settings.xml that this system alias will not contain any information.

1 <operation name="debug" value="$widget">alert</operation>

Example: [XML DATA]

instance
The instance alias will return the instance of the application package opened.

1 <operation name="debug" value="$instance">alert</operation>

Example: 2

Note that an application can limit the number of instances that can be active and that a specific application instance can be reached using
"#appname_{$instance}"

package
The package alias will contain the XML of the application file. Observe however that when you are using this alias that you must use relative
path and never absolute path.

Using this alias you can open views and process files by adding an expression after the variable.

1 <operation name="debug" value="$package">alert</operation>

Example: [XML DATA]

home
The home alias is available when using application packages and when the home element has been defined in the settings element of the
application file.

1 <operation name="debug" value="$home">alert</operation>

Example [XML DATA in the form of a filelisting of the folder]

Operation
The operation element is used to perform application logic on one or several UI components.

Usage

Operation is a child element of the step element and will therefore be executed once that step is executed by the system.

In the section "Using Operations" we explain the attributes of operations as well as a complete operation reference. The type of operation
(name) and on what component or view it should be executed (value) are provided as attributes. For things to make sense we need to
separate the meaning of operations and the operation element in this documentation. While there is only one operation element there are
several different types of operations (such as call, bind or debug). You define the option to use in the name attribute of the operation element.

The value attribute which can be found on most operations will always evaluate the value placed in it, whether it is an alias, an expression or
a string.

Event Model
The Event Model is central to understanding how XIOS/3 programming works. It is the foundation for end-user interaction with XIOS/3
applications.

Events are emitted when the end-user interacts with XIOS/3 and your application. If data is bound to the object from which the event was
emitted it too can be used. The Event Object can also be emitted using Expressions. In this case no event type is needed and like with end-
user created events then state of the component is provided.

Event Model Flow Chart

Figure: The Event Model Flow Chart. Interaction with components will trigger events which in turn are used to execute application logic in the form of operations.

XIOS/3 Developer Manual - 2022-06-09 70/164

Event Object
The Event Object is emitted every time a component is clicked; the developer requests it from a component or when a user perform a
shortcut command.

Every Event Object is made up of five parts. One of these is the event type, which contains information about what event triggered the
Object. The second part is the data document (abbreviated dataDoc) which contains a URL to the XML data document that is bound to the
component that made the event. Note that when events are made by components that are not bound to data, system events or view events
that there is no dataDoc, and that therefore can't be any Base or Selection either.

In the Xpath we find the basepath to which the component is bound to. The selection part contains a xpath of the selection in the data
starting from the basepath. The fifth part is the value. If a text()-node is selected a text will appear here, if not it will be empty.

Name Type Value Description
Type enumeration Component Events, System

Events, View Events
The type of event made

dataDoc string path An URL to the XML data
document

Xpath string match The basepath of the bound data
Selection string match The xpath selection in the XML

document, starting from the
basepath

Value string Any string value The text node of the selection (if
it exists)

Table: The Contents of the Event Object

Event Types
There are three different types of events; Component Events, System Events and View Events. They differentiate by what created them. In the
end they are all made by user interaction, however they are made by different parts of XIOS/3 and thus made.

Component Events are made from when the user interacts with a component, like a button. It will (when selected) create an Event Object with
the type Select.

System Events are made by the XIOS/3 system. These include Login and Authorize events.

View Events are specific to views and are basically shortcut events such as CTRL+S or ESCAPE. These can also be captured by event listeners.

Event Capturing
See trigger element section.

Component Events
Binding components to other components

When binding one component to another you create an event object, that does not contain any event type. The real advantage of binding
data like this is that changes made to the XML file will be updated directly in both components when making a change to the data with either
component.

1
2 <?xml version="1.0"?>
3 <process name="musicplayer" description="musicplayer application" author="XIOS/3">
4
5 <step id="100" name="Bind data to combobox using grid">
6 <operation name="bind" value="#musicplayer#gridMusic">
7 <component view="musicplayer" name="cb_artists" select="/"/>
8 </operation>
9 </step>

10 </process>

Working with the !

In the example below we first bind the stations.xml document to a grid component called gridMusic. We then set up an event listener that will
listen for the Select event made in the grid component. This is made when the user selects a value in the grid.

The first step will populate the grid component with radio stations (using the bind operation). We bind the data from the root; which is radio.

The second step will be executed by the event listener. When a selection is made in the grid a single station node will be selected. In step 101
we bind the event object selection to our other two components. The description attribute is bound to the input field and the entire station
element is bound to the listview.

The XML data

1
2 <?xml version="1.0"?>
3 <radio>
4 <station name="Example 1" url="http://example.com/" description="Example music for all ages."/>
5 <station name="Example 2" url="http://example2.com/music/" description="Jazz Music by Example Ltd."/>
6 </radio>

The Process XML

1
2 <?xml version="1.0"?>
3 <process name="musicplayer" description="musicplayer application" author="XIOS/3">
4 <trigger view="musicplayer" component="gridMusic" event="Select" step="101"/>
5
6 <step id="1" name="Bind data to grid component">
7 <operation name="bind" value="home://data/stations.xml">
8 <component view="musicplayer" name="gridMusic" select="/radio"/>
9 </operation>

10 </step>
11
12 <step id="101" name="Bind data to input field">
13 <operation name="bind" value="!">
14 <component view="musicplayer" name="inputEdit" select="/station/@description"/>
15 <component viwe="musicplayer" name="listviewPlayer" select="/station"/>

XIOS/3 Developer Manual - 2022-06-09 71/164

16 </operation>
17 </step>
18 </process>

View Events
There are events that are specific to views and not components. Currently the majority of events available are shortcut events that allows the
application developers to make shortcut commands in their application. There are however some commands that are reserved by XIOS/3. A
list of these is posted below.

The shortcut events are produced when a user interacts with an application using shortcut keys such as Ctrl+S for save and Ctrl+C for copy.
XIOS/3 allows for capturing these events and then trigger operations.

XIOS/3 can capture a combination of control, shift, alt and meta key. Just combine them as "Ctrl+", "Shift+", "Alt+" and "Meta+" prefix to
unmodified key label, e.g. "Ctrl+Alt+A". It is also possible to capture specific character inputs by prefixing the character with "Char", e.g.
"Charx" for an unmodified keypress on "x" or "CharX" for a Shift+X keypress. Non-letter key presses are available under their DOM event
specified name, when available. These include Enter, Space, Tab, Delete, End, Help, Home, Insert, PageDown, PageUp, ArrowDown, ArrowUp,
ArrowLeft, ArrowRight, Escape, ScrollLock, Pause, AltLeft, AltRight, ShiftLeft, ShiftRight, ControlLeft, ControlRight, MetaLeft, MetaRight,
ContextMenu, F1-F24.

In addition to the keyboard events there are a number of events that are fired for a view that are not component specific.

Name Description
Opened A view has been opened and the components are ready for interation

from users and process code.
Closing The view is about to close down.
Close The view has closed.
Focus The view has gained focus.
Blur The view has lost focus.
Maximize The view size is maximized.
Restore The view size is restored from maximized size.
ResizeEnd The user has stopped resizing the view.
Minimize The view is "minimized", e.g. effectively hidden until restored.
RestoreAppWin The view is restored from minimized state.

Table: View Events
Since these events do not originate from any component, no component attribute should be supplied in the element.

Observe that the Unload events is triggered when the user is closing the browser.

Name Type Values Description
view string Any string value The name of the view from which

the event will originate
event string Any event name The event made by the user or

the system
step string identifier Step to execute

Table: Required attributes

Syntax

1
2 <trigger view="[string]" event="[enumeration]" step="[string]"/>

Examples

1
2 <?xml version="1.0"?>
3 <process name="myprocess" description="some description" author="XIOS/3">
4 <trigger view="calculator" event="Alt+A" step="Add"/>
5 <trigger view="calculator" event="Ctrl+B" step="Bold"/>
6 <trigger view="calculator" event="Opened" step="Config"/>
7
8 <step id="Add" name="Perform addition">
9 ...

10 </step>
11
12 <step id="Bold" name="Make numbers bold">
13 ...
14 </step>
15
16 <step id="Config" name="Configure settings">
17 ...
18 </step>
19 </process>

Reserved Events

These events are captured by XIOS/3 core.

Event Description
CTRL+ALT+D Toggle debug log
ALT+R Send Refresh event to currrent component
CTRL+ALT+R Reload current view
CTRL+ALT+Q Close current view
CTRL+ALT+T Open the Shell Application (terminal)

Table: Core Key Events
These events are captured by the current component, if there is one and the component is listening for the event

Event Description

XIOS/3 Developer Manual - 2022-06-09 72/164

CTRL+A Select all

Tab Move focus to the next component
Enter Confirm
Escape Cancel
ArrowLeft Move left
ArrowRight Move right
ArrowDown Move down
PageDown Mov up
Delete Delete
Home Move home
End Move to end
CTRL+C Copy
CTRL+V Paste
CTRL+X Cut
CTRL+Y Redo
CTRL+Z Undo

Table: Component Key Events

System Events
System Events are events made by the XIOS/3 system. These can also be captured by the Process XML event listeners.

These events do not require any component or view attributes when defining them in an event listener. It does however need a communicator
attribute to define which part of XIOS/3 throws the event.

The standard communicator is xios. You can however make you own communicator using the channel operation. Groups can also be
communicators; when applications are stored in the groups virtual disk.

When a new folder is created by the filesystem the system will throw a "NewFolder" event.

Name Type Values Description
communicator string Any string value Communicator that is throwing

the event
event enumeration Join, Saving, Completed, Login,

LoginFailure, Authorized, Error,
Close, Timeout, NewFolder, Insert

The event made by the system

step string identifier Step to execute

Table: Required attributes

Syntax

1 <trigger communicator="[string]" event="[enumeration]" step="[string]"/>

Examples

1 <process name="xiosLogin" description="Main process file for Calculator" author="XIOS/3">
2 <trigger communicator="xios" event="Login" step="Config"/>
3
4 <step id="Config" name="Initiate Configuration">
5 ...
6 </step>
7 </process>

Using Expressions
This section provides you with an in depth coverage of the XIOS/3 Expression Language, which is used primary to allow for communication
between data and components. In the chapter entitled "Definition" we explain the primary usage of the Expression Language and its
importance in the Process XML language. We provide you with a series of easy to understand examples.

As a developer you are also allowed to use functions in the Expression language, a list of these can be found in the Functions chapter.

Definition
XIOS/3 uses an expression language to allow for communication between components and data. The language is simple but powerful and is a
very important part of application logic.

The syntax of an expression can be divided in to two parts. The first part is a reference to XML data and can appear in several different ways.
It can be a reference to a specific component, a variable containing data or a context data selection all of which we will explain in greater
detail later. The second part of an Expression is an XPath expression which can be used to select data which is available in the first part of the
Expression. In order to oversimplify we can say that the first part contains data while the second part, which is optional, is used to filter the
data. Take a look at this expression:

#Explorer#treeFolders

The first expression only points to a component named treeFolders which is located inside a view named Explorer. Here we establish a
fundamental rule, which goes "when referring to a component we must also specify the name of the view hosting that component". Basically
we need the full address of the component. Knowing this will help you better understand the Process XML language in its entirety.

To the treeFolders component, which is a tree component, we bind XML data of a folder structure (example 1). If no selection has been made
in that component this Expression reference will return the entire XML document, since the selection is by default is set to the root of the
document. If a selection has been made (example 2); for example the first child element then it and its children will be available instead. If
the selection had been made on the Pictures folder instead of the folder named home it would return the data in example 3.

Example 1:

1 <folders name="xios" id="100">
2 <folder name="Home" id="200">
3 <folder name="Document" id="201"/>
4 <folder name="Pictures" id="202"/>

XIOS/3 Developer Manual - 2022-06-09 73/164

5 </folder>
6 <folder name="Applications" id="300"/>
7 </folders>

Selection: /folder[1] or / (root)

Example 2:

1 <folder name="Home" id="200">
2 <folder name="Document" id="201"/>
3 <folder name="Pictures" id="202"/>
4 </folder>

Selection: /folder[1]/folder[1] (first child of root)

Example 3:

1 <folder name="Pictures" id="202"/>

Selection: /folder[1]/folder[1]/folder[2] (second child of the first child of root)

If we instead would have used this Expression;

#Explorer#treeFolders#@name

In this Expression we use both parts; data and XPath. The second part of an Expression always starts with a hash-sign (#). Here we request
the name attribute of the selected element. To continue the examples above is would result in the following:

Example 1: xios
Example 2: Home
Example 3: Pictures

As you can see only a text value would be available compared to XML data when we did not append the XPath expression for selecting the
name attribute.

Variables and context data selection
As mentioned earlier in this text, the first part of an Expression can be presented in the form of a variable or in the form of context data.
These might look like this:

#view1#component#XPath-Expression
Alias#XPath-Expression
!#XPath-Expression

#help#grid#@name
$treeData#@name
!#@name

Here we assume that the variable $treeData contains the same information as #Explorer#treeFolders. Also note that a hash-sign is used to
separate the data from the XPath, just like in the previous examples. In the case of context data we use the exclamation mark to obtain the
last selected data. When no selection has been made the exclamation mark will not contain anything. The scenarios above would result in this
when using the Expression !#@name.

Example 1: (nothing)
Example 2: Home
Example 3: Pictures

Converting the Expression in to a string
Expressions can be converted in to string by placing them between curly brackets. It is good practice to do so whenever you are expecting a
string value to be passed from your Expression. This makes it possible to aggregate several Expressions to form a large string, or combine it
with text to do the same.

Expression can also be aggregated to form a string when combined with other text and placed inside curly brackets that will convert the value
in to a string.

Name: {#Explorer#treeFolders#@name} ID: {#Explorer#treeFolders#@id}.

Example 1: Name: xios ID: 100.
Example 2: Name: Home ID: 200.
Example 3: Name: Pictures ID: 202.

External XML files
Expressions can also be used in conjunction with external XML data documents. Since the first part of an Expression is data we can therefore
just replace the reference to the component and substitute it with an URL to a XML document like such;

http://www.somesite.com/documents/myfile.xml#/document[1]/chapter[1]/@title

In this expression the data is the XML contained in the file that the URL points to. The second part of the Expression is trying to extract the
title of the first chapter. As you can see the XPath expression starts with a slash, which means that it starts at the root element.

Additional features in the Expression language
The Expression language also supports the usage of methods which can be applied on the data.

{#view1#component1.getvalue()}

Here we apply the getValue method on a component called component1 which is located in the view1. We also use curly brackets to convert
the value in to a string.

Using Operations
XIOS/3 Developer Manual - 2022-06-09 74/164

Operations are building blocks of the application logic. They define that will happen when the end-user clicks on a specific component
(together with the trigger element and the step element). Operations are logical command that will perform actions on components.

All operations must be placed inside a step element.

In this chapter every operation begins with an explanation about the operation and what it is used for. This is proceeded by a syntax and
examples section, and then finally a related topics section.

Attributes
There is no specific syntax for operation element because different operations can have different attributes, thus different syntax.

Attributes
Required attributes

Name Type Values Description
name string Any string value The operation to use
value string string or expression The data on which the operation

should be performed. This value
will always be evaluated

Examples
This section acts as a directory for examples. We have gathered many examples in the form of Applications, Components, Operations,
Widgets and Layout.

Applications
This section contains detailed examples of applications developed for the XIOS/3 platform. They range from basic applications with limited
functionality to more advanced and flexible applications.

Each application example is divided in to six parts; the introduction, The Application, The XML data, The UI XML, the The Process XML and
Final Word. Together they cover code examples, descriptions, detailed information and images.

Updates
This part of the documentation will be continuously updated. You should revisit this section often for more application examples.

Book List
Here we demonstrate how to build a simple application (BookList) made up of a single view that lists books and allows you to select books
and add new books to the list. This example shows the XIOS/3 MVC pattern XML structure in practice and clarifies how the model, view and
control relate to one another.

The Application
As you can see below the application is very simple with only a few components. There is also some limited ability to change the XML data.
The focus is the list component which displays and handles the XML data.

Figure: BookList screenshot

The XML Data
The following XML data describes a list of three books. The book titles are described as attribute values and the author and price elements
hold text values.

1 <?xml version="1.0"?>
2 <lists>
3 <list name="Books">
4 <book title="The Hobbit">
5 <author>J.R.R. Tolkien</author>
6 <price>20</price>
7 </book>
8
9 <book title="Neuromancer">

10 <author>William Gibson</author>
11 <price>10</price>
12 </book>
13
14 <book title="High Fidelity">
15 <author>Nick Hornby</author>
16 <price>15</price>
17 </book>
18 </list>
19 </lists>

XIOS/3 Developer Manual - 2022-06-09 75/164

Example: BookList data XML

The Application Package
The following XML describes the application package. It limits the number of instances to one and also defines what resources should be
downloaded when the applications is taken offline. Both the view file and the process file will start onLoad.

1 <?xml version="1.0"?>
2
3 <application name="BookListApp" icon="xios/icons/network/32x32/earth.png" xmlns:xlink="http://www.w3.org/1999/xlink" instances="1">
4 <settings>
5 <path>examples/applications/</path>
6 <home>home://Applications/</home>
7 </settings>
8
9 <about loader="false" version="1.0" revised="2019-01-28" created="2019-01-28" copyright="Copyright © 2019 XIOS/3 AB. All rights reserved.">

10 <description>This is an example application of a booklist</description>
11 <license xlink:type="simple" xlink:actuate="onRequest" xlink:href="https://xios3.com/license/xios_1.xml">XIOS.1</license>
12 <installed>2019-01-28</installed>
13 </about>
14
15 <resources>
16 <item xlink:href="examples/data/books.xml"/>
17 </resources>
18
19 <view xlink:actuate="onLoad" xlink:type="simple" xlink:href="examples/applications/views/booklist.xml"/>
20 <process xlink:actuate="onLoad" xlink:type="simple" xlink:href="examples/applications/processes/booklist.xml"/>
21 </application>

Example: BookList data XML

The UI XML
The following UI XML describes the GUI of the BookList example application, presenting a book list application view. The "BookList screenshot"
above, shows how the UI XML is visualized as an application.

The UI XML contains components for adding new book entries holding title, author and price fields and a button for adding the new entry.

The application view also lists all the existing books defined in the data XML above and enables the end-user to move book entries between
the left and right parts of the list changing reading status of the books using the arrows in the middle.

1 <?xml version="1.0"?>
2 <view name="BookListView" title="BookList UI" version="1.0" height="400" width="400" icon="xios/icons/network/16x16/earth.png">
3 <panel name="main" type="row" look="plate" width="auto" padding="5">
4 <input name="title" label="Title" width="200" tabindex="1"/>
5 <input name="author" label="Author" width="200" tabindex="2"/>
6 <input name="price" label="Price" width="200" tabindex="3"/>
7 <button name="addBook" text="Add New Book" width="100" tabindex="4" align="right"/>
8
9 <list name="books" header="Books" mode="columns" width="auto" height="207">

10 <item match="book" display="concat(@title,' - ',author)"/>
11 </list>
12 </panel>
13 </view>

Example: BookList view (UI XML)

The process XML
The following process XML describes the programming logic of the BookList example application, connecting the above data XML and UI XML.

The process XML contains programming logic which:

Starts the application view;
Binds the book data to the list component in the view;
Enables the interaction when adding new book entries

1 <?xml version="1.0"?>
2
3 <process name="BookListControl" description="BookList Process">
4 <trigger view="BookListView" component="addBook" event="Select" step="3"/>
5
6 <step id="1" name="Show Application view">
7 <operation name="call" value="2"/>
8 </step>
9

10 <step id="2" name="Bind data">
11 <alias name="dataDoc" value="examples/data/books.xml" model="value"/>
12
13 <!-- Bind data -->
14 <operation name="bind" value="$dataDoc">
15 <component view="BookListView" name="books" select="/"/>
16 </operation>
17 </step>
18
19 <step id="3" name="New Entry">
20 <!-- add a new book entry to list -->
21 <operation name="change" value="$dataDoc">
22 <store select="/lists/list" type="append" model="data">
23 <book title="{#BookListView#title}">
24 <author>{#BookListView#author}</author>
25 <price>{#BookListView#price}</price>
26 </book>
27 </store>
28 </operation>
29
30 <!-- set selection to last added item -->
31 <operation name="setSelection">
32 <component view="BookListView" name="books">
33 <item select="/lists/list/item[last()]"/>
34 </component>
35 </operation>
36
37 <!-- Set focus to title input field -->
38 <operation name="callMethod" value="#BookListView#title">
39 <method name="activate"/>
40 </operation>
41
42 <!-- Clear title, author and price input fields -->
43 <operation name="action" value="#BookListView">

XIOS/3 Developer Manual - 2022-06-09 76/164

44 <component name="title" action="clear"/>
45 <component name="author" action="clear"/>
46 <component name="price" action="clear"/>
47 </operation>
48 </step>
49 </process>

Example: BookList process XML

Line 4
The trigger in the BookList process XML waits until a Select event occurs and will then call step 3 and start executing the operations in that
step. The trigger action is initiated when the end-user clicks on the button named addBook in the application view.

Line 6-8
In step 1, the operation Open executes. This will display GUI of the application in the form of the event listenersUI XML file. The application
should look like the screenshot in the "BookList screen shot" above.

Line 10-17
In step 2, an alias variable is assigned to the data XML document. The bind operation populates the list component named books in the
BookList application view, using the data in the alias holding the data XML. This results in the list component showing the list of books, as
seen in the "BookList screenshot" above.

Line 19-49
Step 3 is initiated by the trigger described above. First, the change operation executes. It appends a new book entry to the book list, using the
text information in the Input fields named title, author and price filled in by the end-user via the GUI.

The expression enclosed in curly brackets may be unfamiliar to someone new to developing XIOS/3 applications. It will be covered in detail in
the section Process Development. For now, you only need to know that the curly bracket expression will be replaced with the value of the
input field it is referring to, which in this case is the text the end-user typed in the GUI input fields.

The second operation to execute is the setSelection operation, which displays the newly added book entry in the GUI as a highlighted entry in
the book list.

Next, the input field named title will be focused using the method activate and made ready for new input by an operation which sets the
cursor in the input field.

The last operation will Inputclear the fields named title, author and price, making them ready for new input.

Final Word
This application is very basic and covers very basics of XIOS/3 application development. The main focus was the logic (Process XML) and the
simplicity of UI XML.

Layout
Layout examples

Column Layouts
Simple column layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

Column 1

1 <panel type="column" width="400" height="400" padding="5">
2 <panel width="100" height="100" look="white"/>
3 <panel width="100" height="100" look="white"/>
4 </panel>

Column 2
Simple column layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

1 <panel type="column" width="400" height="400" padding="5">
XIOS/3 Developer Manual - 2022-06-09 77/164

2 <panel width="100" height="100" look="white"/>
3 <panel width="auto" height="100" look="white"/>
4 </panel>

Column 3
Simple column layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

1 <panel type="column" width="400" height="400" padding="5">
2 <panel width="100" height="100" look="white"/>
3 <panel width="auto" height="100" look="white"/>
4 <panel width="auto" height="100" look="white"/>
5 </panel>

Column 4
Simple column layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

1 <panel type="column" width="400" height="400" padding="5">
2 <panel width="auto" height="100%" look="white"/>
3 <panel width="100" height="100" look="white"/>
4 <panel width="auto" height="auto" look="white"/>
5 </panel>

Mixed Layouts
There are examples of mixed columns. The padding and look attributes are used to illustrate how the panels are positioned for copy-paste
purposes.

Mixed 1

1 <panel type="column" width="400" height="400">
2 <panel type="row" width="100" height="100%" padding="5">
3 <panel width="100" height="100" look="white"/>
4 <panel width="auto" height="100" look="white"/>
5 <panel width="auto" height="100" look="white"/>
6 </panel>
7 <panel type="column" width="auto" height="auto" padding="5">
8 <panel width="auto" height="auto" look="white"/>
9 </panel>

10 </panel>

Mixed 2
Mixed column/row layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

XIOS/3 Developer Manual - 2022-06-09 78/164

1 <panel type="column" width="400" height="400">
2 <panel type="row" width="100" height="100%" padding="5">
3 <panel width="100" height="100" look="white"/>
4 <panel width="100" height="100" look="white"/>
5 <panel width="100" height="auto" look="white"/>
6 </panel>
7 <panel type="row" width="auto" height="100%" padding="5">
8 <panel width="100%" height="150" look="white"/>
9 <panel width="100%" height="auto" align="right" padding="5" valign="bottom">

10 <panel width="100" height="200" look="white"/>
11 <panel width="100" height="200" look="white"/>
12 </panel>
13 </panel>
14 </panel>

Mixed 3
Mixed column/row layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

1 <panel type="column" width="400" height="400">
2 <panel type="row" width="300" height="300" padding="5">
3 <panel type="column" width="100%" height="200">
4 <panel type="row" width="200" height="auto" padding="5">
5 <panel width="auto" height="100" look="white"/>
6 <panel type="row" width="auto" height="auto" align="right">
7 <panel width="50%" height="auto" look="white"/>
8 </panel>
9 </panel>

10 <panel width="100%" height="100%" look="white"/>
11 </panel>
12 <panel width="auto" height="auto" look="white"/>
13 </panel>
14 <panel type="row" width="auto" height="300" padding="5">
15 <panel width="100%" height="100" look="white"/>
16 <panel width="auto" height="auto" look="white"/>
17 </panel>
18 </panel>

Row Layouts
Basic row layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

Row 1

1 <panel type="row" width="400" height="400" padding="5">
2 <panel width="100" height="100" look="white"/>
3 <panel width="100" height="100" look="white"/>
4 </panel>

Row 2
Basic row layout. Here the padding and look attributes are used to illustrate how the panels are positioned for copy-paste purposes.

XIOS/3 Developer Manual - 2022-06-09 79/164

1 <panel type="row" width="400" height="400" padding="5">
2 <panel width="100" height="100" look="white"/>
3 <panel width="100" height="auto" look="white"/>
4 </panel>

References
The References section contains a reference of all UI Components, ActionURLs, Process Operations and Functions that are available for
developers.

The "Components" section provides you with in depth insight about components, their purpose, usage areas and also what actions, methods
and events apply.

We also provide a complete reference to all logical operations available in the "Process Operations" section. For each operation we also have
one or more examples.

ActionUrls
ActionURLs are functions that resemble in appearence to functions as they take input parameters but they are tied to a specific channel eg
home:// and will perform the function on the defined channel.

lastLogins
An actionURL that lists the lastest logins to a specific group, providing an atom:feed document.

Syntax
The only parameter passed to this function is the group path (group/subgroup).

1 XML = [channel]://lastLogins([string])

Example
This example will provide the last logins of the group "XideZone" and the subgroup "europeans".

1 <alias name="lastLogins" value="home://lastLogins(XideZone/europeans)"/>

Related Topics
None available

leaveGroup
An actionURL that allow the user to leave a group.

Syntax
The only parameter passed to this function is the group path (group/subgroup).

1 nothing = [channel]://leaveGroup([string])

Example
This example will make the user leave from the "XideZone" subgroup "europeans".

Observe that when leaving a group the user looses any associations with that group (username, files etc).

1 <alias name="leave" value="home://leaveGroup(XideZone/europeans)"/>

Related Topics
None available

search
An actionURL that returns a composite file listing of search results matching the searhc query in the folder supplied and any subfolders.

This operation is very resource demanding when performing a recursive search. So it it wise to reconsider the usage of it.

Syntax

XIOS/3 Developer Manual - 2022-06-09 80/164

The first parameter is the root folder for the search. The second parameter is the serch term. The third parameter is the a flag if the search
should be recursive for all child folders.

NOTE: always supply an end slash when refering to folder paths.

1 XML = [channel]://search('[string]','[string]','[boolean]')

Example
This example will produce an alias, $searchResults, which will contain an XML data document (atom:feed with atom:entry elements for each
document found). The list will contain all documents which start with the characters 'abc' and the search will not be performed resursively in
all the subfolders of 'home://Documents/'

1 <alias name="searchResults" value="home://search('home://Documents/','abc','false')" model="data"/>

Related Topics
None available

searchUser
An actionURL that returns an XML node-set of information about a user, including id and alias. A list of matching users is returned.

Syntax
This actionURL is very flexible and allows for input of several search variations. Two parameters can be passed. The first is required and is the
search term, the second is the group path and is optional.

The first parameter performs a search for the alias (username) by default. If you with the perform a search on the user's id then write "user:
[id]" instead.

If no group path is passed the the actionURL will perform a search among the xios group users. A group path might be found in the user's
#GroupManager document.

1 XML = home://searchUser(['meta:value AND meta:value'],['grouppath'])

Example
In the below example we might know only the user's username but want to know the userId so we access it.

1 <alias name="userData" value="home://searchUser(goran)"/>
2 <alias name="userId" value="$userData#/atom:entry/dc:user"/>

Here we do the same but if we only know the userid but want to know the username.

1 <alias name="userData" value="home://searchUser(user:12884901950)"/>
2 <alias name="username" value="$userData#/atom:entry/atom:title"/>

Related Topics
None available

Components
Components are building blocks of an application and the visual representation of the possibilities of end-user interaction.

In this reference section every component is individually described, first what the component looks like and then how it is used. Depending
on the usage area and the possibilities of the component is can have a short or very long usage section.

Component specific details are summarized in the details section. These include the type of element the component is, the component type,
which element can be used as parent elements, what child elements are available and if it can use rules.

The attributes section is divided in to required and optional attributes and the bolded text represents the default value of the attribute.

For components that use specific child elements these are listed under the child elements section with their respective attribute. In the case
that the component child elements have their own child elements, then these are also listed here, together with a reference of what the
parent element is.

Actions, Events, and Methods, for every component is also listed in aplhabetical order. For each component a syntax and example section is
also provided, together with links to examples and links to related components.

Accordion
This component defines a set of vertical sliding panels resembling an accordion.

Each Panel component has a header that shows the panel when clicked on. The accordion component is used to keep several panels in one
column and provides a convenient way of switching between them. The component utilizes mutex.

Usage
This component is a container component that has Panel components as children and these panels can in turn contain other components
such as Label or Input fields.

The accordion works if there are two or more panels inside of it, otherwise its main functionality cannor be used.

Details
Component Type: Navigation

Container Properties: High Level Element, Can act as a container

Parent Elements: Container, Panel
XIOS/3 Developer Manual - 2022-06-09 81/164

Child Elements: Panel

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px), percent (%) The height of the component
width measure values integer (px), percent (%) The width of the component

Optional Attributes

Name Type Values Description
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
value string Any string value Name of preselected panel

Child Elements
None available.

Actions
hide, show

Events
Init, Select

Methods
getValue, setValue

Syntax and Examples

This example works on the fly and does not need to be bound to data to work.

1 <accordion name="accordion1" width="auto" height="auto">
2 <panel name="panel1" type="flow" look="white" selected="true" title="Panel 1" padding="5" icon="xios/icons/objects/16x16/brush1.png">
3 <label name="lBrushes" default="Brushes"/>
4 </panel>
5 <panel name="panel2" type="flow" look="white" title="Panel 2" padding="5" icon="xios/icons/objects/16x16/palette.png">
6 <button name="bOK" text="OK"/>
7 </panel>
8 </accordion>

Example: UI XML for the Accordion component

Related Components
Panel

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: Yes

Breadcrumbs
Creates a clickable path into a structure, like a path to a file.

Usage
The breadcrumb component uses rules to display the path to a selected node in a structure. The rule elements use the match attribute to
select the ancestor nodes to display. Use the display attribute to create either output literals or data from the matched node. Note that any
XPath used in the display attribute is relative to the rule match.

Details
Component type: Structure

Component Properties: Data Driven Component

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
height measure values integer (px), percent (%) The height of the component.

Defaults to 100%.
width measure values integer (px), percent (%) The width of the component.

Defaults to 25.

XIOS/3 Developer Manual - 2022-06-09 82/164

maxChars numerical positive integer Maximum number of characters
per label. Truncates with ellipsis.

defaultValue string Any string value Default value to use if the
selected node does not yield any
text.

Child Elements

rule
The rule element is used to match specific data elements and display them as part of the path.

Required attributes

Name Type Values Description
display string XPath Expression XPath expression relative to the

match attribute
match string XPath Expression XPath expression relative to the

data bound

Browser
Defines a web browser application component. It can be utilized to surf the web.

This component does not have any child elements. As for the render capabilities it uses the rendering engine of the browser that is currently
browsing the OS.

Usage
Using the component is a matter of binding data to the browser component in the form of an URL. When the components starts to load the
website it will make a Loading event and when it is finished it will make a Completed event.

Details
Component type: System

Component Properties: High Level Element, Data Driven component

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px), percent (%), auto,

fill
The height of the component

width measure values integer (px), percent (%), auto,
fill

The width of the component

Optional Attributes

Name Type Values Description
href string about:blank, URL Determines the startpage of the

browser
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
value string about:blank, URL Determines the startpage of the

browser

Child Elements
None available.

Actions
hide, show

Events
Completed, Loading

Methods
getValue, setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work. However in order to navigate to other webpages it needs to be
bound to URLs.

1 <browser name="Browser1" width="auto" height="auto" href="http://www.xidezone.com"/>

Example: UI XML for the Browser component

Related Components
XIOS/3 Developer Manual - 2022-06-09 83/164

None available.

Button
Defines a clickable button with a text label. The button is the most common used component as regarding to interaction and comes with a
design and interactivity functionality.

Usage
Buttons have very limited usage range. They are the basics or end-user interaction and are simply meant to be clicked. The component is
controlled by attributes. Using the default attribute you can choose if the button should be selected by default to indicate an option that is
preferred. By setting the default attribute to true it will be rendered as selected.

Once a button has been clicked it will fire a Select event.

The text attribute is used to create a label on the button. While the type attribute can if set to do or revert create the icons inside the button,
illustrating a right pointing arrow (do) or a left pointing arrow (left). This can be used for undo/redo type functionality in applications in
conjuntion with the disable action.

Details
Component Type: Selector

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component.
height measure values integer (px), percent (%) The height of the component
text string Any string value Creates a text label on the button
width measure values integer (px), percent (%) The width of the component

Optional Attributes

Name Type Values Description
btstyle string CSS Syntax Overrides the default button text

style
default boolean true, false Determines if the button is

selected by default
hide boolean false, true Defines if the component should

be hidden upon start up
enabled boolean false, true Defines if the component should

be enabled upon start up
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
type enumeration default, do, revert Sets the GUI type of the button

Child Elements
None available.

Actions
enable, disable, hide, select, show

Events
Select

Methods
setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <button name="button" text="Edit" width="100" height="20"/>

Example: UI XML for the button component

Related Components
None available.

ButtonBox
Defines a button looking box located inside its parent component. It can be displayed as a text and/or icon. The component has the same
basic functions as the Button component but has several advantages since you can add you own icons inside the component.

Usage
The main purpose for this component is to aid the developer when making menus. It allows for more flexibility in the area of design than a

XIOS/3 Developer Manual - 2022-06-09 84/164

normal button and can be incorporated in the ToolBar component.

In order to use the buttonbox component you need to set either the text or icon attributes. If both are set they will both appear next to each
other with the icon the left and the text to the right. The text will only be displayed when the component is inside a toolbar or menu.

The mode attribute controls the behavior of the component. Setting the mode to switch will leave the buttonbox pressed in after the end-user
has clicked on the component, as opposed to the default behavior, when mode is rebound, where the state of the component resets after the
click.

ButtonBoxes can also utilize mutex behavior, by placing several buttonboxes inside a Group component that has the mode attribute set to
mutex. The Group component offers several modes for buttonboxes.

When the selected attribute is set to true the buttonbox will be selected (pushed down) by default. Buttonboxes can also open Menu
components using the submenu attribute by providing the name of the menu component.

Details
Component type: Selector

Component Properties: Child Element, Acts as menu button in toolbar

Parent Elements: Container, Group, Menu, ToolBar

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
height measure values integer (px) The height of the component
icon string URL Path to icon to show in the

buttonbox
name string unique name The name of the component
text string Any string value Text displayed in the buttonbox
width measure values integer (px) The width of the component

Optional Attributes

Name Type Values Description
animate boolean false, true
disabledIcon string URL Path to icon displayed when the

component is disabled
duration measure value milliseconds The duration of the animation
enabled boolean true, false Set to false the component will be

grayed out
hide boolean false, false Defines if the component should

be hidden upon start up
hover string URL Path to icon displayed when the

component is hovered
icon2 string URL Path to icon to display when using

animation
mode enumeration default, toggle Decides how the buttonbox

should behave when clicked
repeat integer [0...n] How many times the animation

should be repeated
selected boolean true, false Indicates if the buttonbox is

selected
style string CSS Syntax Overrides the component's

default style
submenu string Any string value Name of the menu component to

open
textposition enumeration default, ontop Defines label position
title string Any string value Tool-tip text
value string Any string value Trigger value for button, if data is

equal to the trigger, the button
will be selected

iconsize numeric An icon size, 16, 32, 48 and 64
supported

Scales the supplied icon image
into the specified size

Child Elements
None available.

Actions
enable, disable, hide, select, show

Events
ContextMenu, Hover, Release, Select

Methods
getValue, release, setIcon

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <toolbar name="fileToolbar" position="top" draggable="false">
2 <group name="fileGroup">
3 <buttonbox name="bbNew" icon="xios/icons/applications/24x24/document_new.png" text="New" title="New"/>
4 <buttonbox name="bbEdit" icon="xios/icons/applications/24x24/document_edit.png" title="Edit" mode="toggle"/>
5 <buttonbox name="bbDelete" icon="xios/icons/applications/24x24/document_delete.png" text="Delete" title="Delete"/>

XIOS/3 Developer Manual - 2022-06-09 85/164

6 </group>
7 </toolbar>

Example: UI XML for the ButtonBox component

Related Components
Container, Group, Menu, ToolBar

Calendar
Defines a visually flexible and highly interactive calendar component that can be nagivated by week or month. It is used to visually display
appointment data.

Usage
This component depends on data work correct. It must be bound to a data document, even if it does not contain any entries. Calendar has
strict requirements regarding the construction of the data bound to the component. This is because it needs to be compatible with several
different calendars.

Primarely, XML documents are intended to act as saved appointments. So document meta data from file listings are used to display
appointments. If bound to a folder listing the component will work due to the fact that the folder listing, even if empty still returns XML.

The UI XML for the component is quite short, and most of the attributes are optional. Omitting the starttime and endtime attributes will cause
the time range of the component to be 0-24. If however only business hours should be shown, say 07-16 then the starttime should be set to
07 and the endtime should be set to 16.

Type is the attribute that controls the visual mode of the component. Here the default value if 5week, which means that the calendar will be
displayed as a week with five days. It can also be set to 7week to be displayed in 7 day mode. Day, today and month are also supported.

It is possible to make the component use the system calendar by setting the shared attribute to true. The component will then share behavior
with all other components that have their shared attribute set to true, even if they are not part of the application.

Calendar has several standardized formats. Date is displayed as: YYYY-MM-DD, while time is displayed as hh:mm:ss. A full timestamp thus
looks like this: YYYY-MM-DDThh:mm:ss(Z/+/-)hh:mm. Example: 2019-02-13T16:48:20Z+01:00 (Z is GMT time. +01:00 indicates 1 hour after
GMT)

Keyboard navigation using the navigation keys (up, down, right, left) is possible. It can be combined with other view events such as Delete,
ESCAPE and Copy.

Observe that some events are available only when making them on appointments (or rather data), these include ContextMenu and Select.
Some events on the other hand are only available on the component it self (not directly on appointments), these include Menu.

Several methods are also offered to extract information and well as customize some attribute defined behavior. The setWeekStartDay method
is used to define if the week should start on a Monday or Sunday and setRange is used to define how many hours should be displayed by the
calendar component.

Selecting several cells simultaneously using the mouse is possible by capturing the Release event and then extracting the selected date and
time using the following methods: getEndDate, getEndTime, getStartDate and getStartTime

Tip: Since filenames in folders can never the de same the need for unique file names emerges. For this the $tm system alias can be used
since it generates a 32-bit integer. Since several files cant be created on the same millisecond.

Meta data standard

1 <atom:entry>
2 <atom:title>[string]</atom:title>
3 <atom:author><atom:name>[string]</atom:name></atom:author>
4 <dc:subject>[string]</dc:subject>
5 <dc:categories>[string]</dc:categories>
6 <dc:startDate>[date]</dc:startDate>
7 <dc:startTime>[time]</dc:startTime>
8 <dc:startTimezone>[time]</dc:startTimezone>
9 <dc:endDate>[date]</dc:endDate>

10 <dc:endTime>[time]</dc:endTime>
11 <dc:endTimezone>[time]</dc:endTimezone>
12 <dc:location[string]></dc:location>
13 </atom:entry>

XML document file standard

1 <vevent>
2 <uid/>
3 <organizer/>
4 <summary>[string]</summary>
5 <dtstamp/>
6 <dtstart>[timestamp]</dtstart>
7 <dtend>[timestamp]</dtend>
8 <description>[string|node-set]</description>
9 <location/>

10 </vevent>

Details
Component Type: Selector

Component Properties: High Level Element, Data Driven Component

Parent Elements: Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
height measure values percent (%), integer (px) The height of the component
name string unique name The name of the component
width measure values percent (%), integer (px) The width of the component

XIOS/3 Developer Manual - 2022-06-09 86/164

Optional Attributes

Name Type Values Description
endTime numerical 0-24 End time to display in calendar

view
intervals numerical 1-60 Number or time intervals an hour

should be divided into when
displayed

shared boolean false, true If component should share
calendar with system calendar

startTime numerical 0-24 Starting time to display in
calendar view

storeformat enumeration YYYY-MM-DD, YYYY/MM/DD,
DD/MM/YYYY

Format of saved date

type enumeration 5week, 7week, day, today,
month

Calendar type to display

shorthand boolean true, false Support appointment shorthand
where clicking a day or making a
range selection opens a small
popup to enter appointment
subject.

Child Elements
None available.

Actions
enable, disable

Events
ContextMenu, DateChanged, DateTime, DoubleClick, Drop, Menu, Release, Return, Select, SelectedDate, SelectedMore, SubjectMore

Special Events
Pressing F2 when an Calendar-event is selected will allow you to edit that specific event without the need to open an external window with
the Calendar component's internal event editor.

Methods
appointmentColor, changeInterval, getEndDate, getEndTime, getPaste, getSelection, getStartDate, getStartTime, setRange, seType,
setWeekStartDay

Syntax and Examples

1 <calendar name="Calendar" type="5week" width="100%" startTime="06" endTime="20"/>

Related Components
Clock, Date

CheckBox
Defines a checkbox that changes it state from checked to unchecked when clicked and then vice versa when clicked again.

Usage
The default attribute is used to set the default pair of values that the checkbox will understand. The default value if false which will make the
component work with true/false, you can however also work with off/on by setting the value of default to off or 0/1 by setting the value to 0.
The look attribute will change the visual appearance of the component.

The state of the checkbox(checked or unchecked) can be accessed using Expressions, and will return the value of the component as either
true or false. Depending on if the CheckBox is checked or not.

You can also use the preLabel or postLabel attributes to add some description text to the CheckBox in front of or behind the component.

The state of the checkbox can be changed using the setValue method to change the state of the checkbox. This is done by passing the value
"true" or "false" in as parameters.

Details
Component type: Selector

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
checked string true, false Decides if the checkbox should be

checked by default

XIOS/3 Developer Manual - 2022-06-09 87/164

default string false, off, 0 The default pair of boolean values
to be used

enabled boolean true, false If the component is available for
interaction

hide boolean false, true Defines if the component should
be hidden upon start up

label string Any string value The label text
look enumeration default, bold, boldwhite, white Defines the visual appearance of

the component
lstyle string CSS Syntax Overrides the default label style
postLabel string Any string value Text label placed behind the

checkbox
preLabel string Any string value Text label placed in front of the

checkbox
selected string true, false Decides if the checkbox should be

checked by default
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements
None available.

Actions
disable, enable, hide, show

Events
Release, Select

Methods
getValue, setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <checkbox name="USD" width="100" height="12" postLabel="Pay with US Dollars!"/>

Example: UI XML for the CheckBox component

Related Components
None available.

Clock
Defines a clock component that shows an analog or digital clock, optionally date, calendar(s) and/or names day.

Usage
The clock component is defined to show time in different ways.

You can use it to show a clock, like the widget in your widget pane or show the current time in different cities across the globe. The latter is
made possible by adding city child elements and adding a diff attribute (time difference).

By setting the calendar attribute to true the clock component will instead be rendered as a calendar. When this has been set it is possible to
set the number of calendar months to be displayed by setting the calendars attribute. When the component is displayed as a calendar you
can utilize the href attribute, to render the calendar using XSLT the way you want to.

The namesday attribute will if set to true display today's namesdays according to Swedish namesday standard.

As this component also support data bindings and rules when it is displayed as a calendar (see example below). Here the rules are used to
create visible selections of the data supplied but can also be used to display current week and so forth.

Details
Component Type: Selector

Component Properties: High Level Element, Data Driven Component

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
calendar boolean true, false Decide if component should be

displayed as monthly calendar
calendars numerical [0-12] Specifies how many calendar

months to show in the calendar
date boolean false, true Shows current date if set to true

XIOS/3 Developer Manual - 2022-06-09 88/164

height measure values integer (px), percent (%), auto Height of component
href string URL Changes the default renderer for

displaying a calendar
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style
mode enumeration digital, analog Decides what clock mode to use
namesday boolean false, true Show current names day
selectdate boolean false, true Should dates in calendar be

selectable
shared boolean false, true Defines if it should share the

global system calendar instead of
creating a new instance

style string CSS Syntax Overrides the component's
default style

summer boolean false, true Adjust for daylight savings time
title string Any string value Tool-tip text
width measure values integer (px), percent (%), auto,

fill
Width of component

xyscale numerical value in percent Scales the clock to the provided
percent value

Child Elements
None available.

Actions
hide, show

Events
Select

Methods
checkNote, getDateValue, getValue, setSkin

Syntax and Examples
These examples work on the fly and does not need to be bound to data to work.

1 <clock name="clockAnalog" summer="true" mode="analog"/>

Example: UI XML for an analog clock component (like the clock widget)

1 <clock name="clockDigital" summer="true" mode="digital"/>

Example: UI XML for an digital clock component (like the system clock)

1 <clock name="clockNamesdays" namesday="true"/>

Example: UI XML to display namesdays

1 <clock name="calClock" calendars="2" width="200" shared="false" calendar="true"/>

Example: UI XML for to display 2 calendars

1 <clock name="calClock" calendars="1" width="200" shared="false" calendar="true">
2 <rule match="/atom:feed">
3 <startDate>{dc:startDate}</startDate>
4 <endDate>{dc:endDate}</endDate>
5 </rule>
6 </clock>

Example: UI XML for calendar with rules to create a visual selection of the current week

Related Components
Date

Color
Defines a visual color picker and/or an inputfield for entering colors in hexadecimal format and the picker.

Usage
The component is used to allow end-users to easily choose colors via a GUI interface. The color that is retrieved using Expressions is in
hexdecimal format.

An input field connected with the color component can also be created using the input attribute. There is also limited support for controlling
the preselected color, using the color attribute, and transparency should be supported, using the transparent attribute.

Details
Component Type: Selector

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

XIOS/3 Developer Manual - 2022-06-09 89/164

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
color string / numerical #[rrggbb] Sets the default color
hide boolean false, true Decides of the component should

be hidden when initially loaded
height measure values integer (px), percent (%) The height of the component
icon string URL Path to icon to display in the color

component
input boolean false, true If a textfield for entering RGB

color should be displayed
label string Any string value The label text
look enumeration default, classic, graphite The visual appearence of the

color component
lstyle string CSS Syntax Overrides the default label style

using CSS
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
transparent string true, false If transparent color should be

enabled
value string / numerical #[rrggbb] Sets the default color
width measure values integer (px), percent (%) The width of the component

Child Elements
None available.

Actions
disable, enable, hide, show

Events
Return, Select

Methods
getValue, setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <color name="colorExample" width="auto" height="auto" color="#ff0000"/>

Example: UI XML for the Color component

Related Components
None available.

ComboBox
Defines a component that displays and allows for selection of item values. It works similarly to a HTML select element with more functionality.
It consists of two parts; the combobox component and the plate component (with its child elements). The latter contains all available values
that can be selected.

Usage
Comboboxes can be populated by defining static child elements or by binding data to the component and populate it with data options that
are dynamically updated.

By setting the editable attribute to true you can allow the end-user to insert values in to the combobox. Thus is can also act as an input field.

The subplate attribute is used when you have defined a plate element outside the combobox element, so that it no longer is a child element.
This might be done for several reasons, such as two comboboxes share the same plate. To be able to do this you need to provide the name of
the desired plate in the subplate attribute.

One item child can have the selected attribute, making it the pre selected value inside the combobox. When retrieving the value of the
combobox it will be equivalent to the text() in the selected item child element, unless a value attribute it set on the child element then it will
equal the value attribute.

The combobox can use rules to render child elements dynamically using bound data. In the example at the bottom, we use rules to match the
component element, and then proceed to output an item element for every component in the XML data document.

The end-user can also interact with the comboxbox using the keyboard. Arrow up and down are used to nagivate the plate. Return us used set
the value in the combobox and Escape will close the plate.

Details
Component Type: Selector

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: Plate

Can Use Rules: Yes
XIOS/3 Developer Manual - 2022-06-09 90/164

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%), auto,

fill
The width of the component

Optional Attributes

Name Type Values Description
placeholder string Any string value Displays a pretext that will

disappear as soon as a value is
selected in the plate

editable boolean true, false If the combobox should act as an
input field

hide boolean false, true Decides of the component should
be hidden when initially loaded

label string Any string value The label text
look enumeration default, classic, grid Defines the UI of the component
lstyle string CSS Syntax Overrides the default label style

using CSS
style string CSS Syntax Overrides the component's

default style
subplate string Any string value The name of the plate to display
title string Any string value Tool-tip text
usethumbnail boolean true, false If the combobox should display

the selected value as visualied in
the child element or with plain
text

Child Elements
See Plate

Actions
enable, disable, hide, show

Events
Change, Focus, Select

Methods
clear, getValue, setValue

Syntax and Examples
The first example requires data to be bound to the plate so that the rules can display the desired items. The second example does not require
data, because the items are predefined.

1 <combobox name="cbExample" width="200" height="20" editable="false">
2 <plate name="myPlate" height="200">
3 <item> Choose a component </item>
4 <rule match="component">
5 <item>{@name}</item>
6 </rule>
7 </plate>
8 </combobox>

Example: UI XML for the ComboBox component (data needed)

1 <components>
2 <component name="Accordion" tag="Component" group="UI XML">
3 <documentation>
4 <description>Accordion description.</description>
5 </documentation>
6 </component>
7 <component name="Browser" tag="Component" group="UI XML">
8 <documentation>
9 <description>Browser description.</description>

10 </documentation>
11 </component>
12 <component name="Button" tag="Component" group="UI XML">
13 <documentation>
14 <description>Button description.</description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for the ComboBox component

1 <combobox name="cbExample" width="200" height="20" editable="false">
2 <plate name="myPlate" height="200">
3 <item>Combo Box</item>
4 <item selected="true">Combination Box</item>
5 <item>DropdownBox</item>
6 </plate>
7 </combobox>

Example: UI XML for the ComboBox component (no data needed)

Related Components
None available.

XIOS/3 Developer Manual - 2022-06-09 91/164

Container
Defines a container that hosts other components described by its rules and dynamically creates and manages these components depending
on the incoming data.

Usage
The main usage of this component comes when designing a GUI based on availble data. This is accomplished by using rules. In this case the
rules will, when the match condition is met, render another component and populate it with data if so desired.

In the example at the bottom of this page we find a code snippet, that will create a text labels for every term element it finds. In the labels the
value of the text attribute of the term element will be displayed. The value is set using Expressions to find the name attribute.

Using setSelection you can set define the selection that will be used in the container.

Details
Component Type: Placeholder

Component Properties: High Level Element, Data Driven Component

Parent Elements: Panel

Child Elements: None available

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
height measure values integer (px), percent (%), auto The height of the component
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
scroll enumeration auto, scroll, visible, false Controls the scroll behavior
show enumeration default, all, selected Defines the visibility of the

rendered components
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
width measure values integer (px), percent (%), auto The width of the component

Child Elements
None available.

Actions
hide, show

Events
None available.

Methods
clearContent, getSelected

Syntax and Examples
Observe that this example needs to be bound to the data in order to work.

1 <container name="coButtons" show="all" width="300" height="100">
2 <rule match="component">
3 <button text="{@name}" width="100"/>
4 </rule>
5 </container>

Example: UI XML for the Container component

Related Components
Info

DataItem
Defines a component that creates data-dependent menu items.

Usage
This component renders menu items dynamically depending on the rendering rules that are set.

The created item (of which there can be several) have all the attribute options as regular menu items.

Using setSelection you can set define the selection that will be used in the dataitem.

Details
Component Type: Atomic

Component Properties: Child Element, Data Driven Component
XIOS/3 Developer Manual - 2022-06-09 92/164

Parent Elements: Menu

Child Elements: None available.

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%) The width of the component
height measure values integer (px), percent (%) The height of the component

Optional Attributes

Name Type Values Description
draggable boolean false, true Defines if the generated options

should be draggable
enabled boolean true, false Set to false the items will be

grayed out
sort boolean false, true Defines if the items should be

sorted alphabetically
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements
None available.

Actions
enable, disable, hide, show

Events
Select

Methods
None available.

Syntax and Examples
Observe that this example needs to be bound to the data provided below in order to work.

1 <menubar name="menuBar" draggable="false" position="top" opacity="50">
2 <menu name="componentMenu" text="Components">
3 <dataitem name="componentDynamicMenu">
4 <rule match="components/component">
5 <item icon="xios/icons/development/16x16/components.png" text="{@name}"/>
6 </rule>
7 </dataitem>
8 </menu>
9 </menubar>

Example: UI XML for the DataItem component

Related Components
Item, Menu, Menubar

Date
Defines a date component that is used to format and display date values. The component will render an input field and a small icon; which
will when clicked launch a date picker tool.

Usage
When a date is selected in the date picker it will appear inside the input field. The selected value is then the value of the component. The
value attribute is formatted according to ISO 8601 date order (YYYY-MM-DD) standard. You can insert a predefined static value or use the
today() value to extract current date for every individual end-user, the latter is done automatically.

The end-user can change this format by changing the value in #Settings (/settings/date), which can be done using the Control Panel
application in the "Locale" section, while in the "Date & Time" tab. The date is always presented as requested by the end-user. The developer
will however always work in the ISO 8601 standard.

By using the icon attribute you can choose where the icon should be located in relation to the input field.

It is possible to make the component use the system calendar by setting the shared attribute to true. The component will then share behavior
with all other components that have their shared attribute set to true, even if they are not part of the application.

Details
Component type: Selector

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

XIOS/3 Developer Manual - 2022-06-09 93/164

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
hide boolean false, true Decides of the component should

be hidden when initially loaded
label string Any string value The label text
look enumeration default, graphite The visual appearence of the

component
lstyle string CSS Syntax Overrides the default label style

using CSS
shared boolean false, true If component should share

calendar with system calendar
style string CSS Syntax Overrides the component's

default style
storeformat enumeration YYYY-MM-DD, YYYY/MM/DD,

DD/MM/YYYY
Format of saved date

title string Any string value Tool-tip text
toggle boolean false, true If the calendar picker should be

toggled when the the input field
component is clicked

value numerical default, [yyyy-mm-dd], today() The date currently showing

Child Elements
None available.

Actions
disable, enable, hide, show

Events
DateChanged, Focus, Select

Methods
getValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <date name="dateToday" value="today()"/>

Example: UI XML for the Date component, with current date predefined

Related Components
Calendar, Clock

Divider
Defines a divider component, which is a simple component that is used to separate menu items. When used it will be displayed as a line
beween menu items.

Usage
The purpose of the divider component is to divide menu options. End-users cannot interact with this component.

Details
Component Type: -

Component Properties: Child Element, Menu Component

Parent Elements: Menu

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements
None available.

XIOS/3 Developer Manual - 2022-06-09 94/164

Actions
None available.

Events
None available.

Methods
None available.

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <menubar name="menuBar" draggable="false" position="top">
2 <menu name="mFile" caption="false" text="File">
3 <item name="mOpenDoc" text="Open" icon="xios/icons/applications/16x16/document_into.png"/>
4 <divider name="md1"/>
5 <item name="mNew" text="New" icon="xios/icons/applications/16x16/document_new.png"/>
6 </menu>
7 </menubar>

Example: UI XML for the Divider component

Related Components
Item, Menu

Form
Defines a form component that is used to stack and popluate traditional form components such as Input, ComboBox and TextArea. If a more
advanced form formatting is desired that can be accomplished by using Panels.

Usage
This component is guided by Rules and also needs data to be bind to function. The rules will only render a component of their match attribute
is found.

Details
Component Type: Placeholder

Component Properties: High Level Element, Wrapper Component

Parent Elements: Panel

Child Elements: None available

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px), percent (%) The height of the component
width measure values integer (px), percent (%) The width of the component

Optional Attributes

Name Type Values Description
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements
None available.

Actions
hide, show

Events
None available.

Methods
None available.

Syntax and Examples
Observe that this example needs to be bound to the data provided below in order to work.

1 <form name="formExample" vmargin="30" hmargin="10" height="auto">
2 <rule match="component/@tag">
3 <input width="80"/>
4 </rule>
5
6 <rule match="component/@group">
7 <combobox name="comboboxExample" width="200" height="20" editable="false">

XIOS/3 Developer Manual - 2022-06-09 95/164

8 <plate name="plateGroups" height="200">
9 <item>Application</item>

10 <item>Data dependent</item>
11 <item>Expander</item>
12 <item>Interaction</item>
13 <item>Layout</item>
14 <item>Menu</item>
15 <item>Presentation</item>
16 <item>Side Menu</item>
17 <item>Time</item>
18 <item>Toolbar</item>
19 </plate>
20 </combobox>
21 </rule>
22 </form>

Example: UI XML for the Form component

Related Components
None available.

Grid
The grid component is used to present much data information in cell format. This is accomplished by defining a row and columns in which the
data is populated.

Headers are displayed above every column and are also sortable (ascending or descending) by column values.

Usage
Basic grid understanding begins with understand how the grid is constructed, how it will be rendered and the rule that data must be bound to
it.

As in the example at the bottom of this page we begin by defining the attributes of the grid element. They control how the grid will behave
when the end-user interacts with it, how it will look and how updated data will be handled. In the example there are two child elements, row
and rule. The row element is the only real child element that the grid has. The rule however is not really a child element, it is more of an extra
markup element to modify the row element above it. Here the row matches an element called component from the data document. The row
itself has four column element which themselves match parts of the data element (e.g. component/@name). The fourth column will match
documentation/description and it is here our rule apply, which matches the same data. So when this condition has been met the grid will
render a label with the value of cell.

Looking at the grid as a whole and the attributes available we find the datachange attribute. When this is set to true it will update the value in
its cells when the data document that it is bound to has been updated by a data transaction. If it is set to false no updates will be made.

The inset attribute will make the grid looked like it is sunken in (embedded) the layout.

The mode attribute controls the behavior of the grid, where the default value will allow for single cell selection. If the mode is set to grid it will
instead render a numbered plate to the left of every row, showing the row number. Furthermore only row selection will be possible.

The selection attribute decides how a selection will be displayed and what data will be selected. When set to row an entire row will be
selected. When set to cell single cells will be selectable, unless the mode attribute is set to grid. If you don't use the attribute the values will
not be selectable. Setting the draggable attribute to true will allow the rows to become draggable creating a simple drag and drop
functionality.

The row element uses the match attribute to select what data will be available to its children, the column elements. These in turn also use the
match attribute to select data. By using a combination of either attributes match and display or attributes match and look, the data will be
correctly rendered. By using the look/match combination you can make cells editable. The display/match attribute makes cells uneditable.

The look attribute decides how the grid cells should look. This only applies if the display attribute has not been set. For normal cells you
should set the value to classic.

Finally the sort and type attributes are used when presorting values. This is done by setting the sort attribute to either ascending (lowest to
highest) or descending (highest to lowest) and the type attribute to either alpha (for sorting alphabetically) or numeric to sort by numbers.

By using the name attribute on the column child element, you will be able to listen to events made specifically from the row which the
column belongs to. The rows can fire "Select" and "Change" events, which allow you to listen for them in Process XML.

Using setSelection you can set define the selection that will be used in the grid.

Details
Component type: Structure

Component Properties: High Level Element, Data Driven Component

Parent Elements: Container, Panel

Child Elements: row, column (child of row)

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%) The width of the component
height measure values integer (px), percent (%) The height of the component

Optional Attributes

Name Type Values Description
datachange boolean true, false If the component should update

upon data change
draggable boolean false, true Makes the grid items draggable
inset boolean false, true Make the grid look sunk in to the

layout
label string Any string value The label text
look enumeration default, graphite The visual appearence of the grid
lstyle string CSS Syntax Overrides the default label style

using CSS

XIOS/3 Developer Manual - 2022-06-09 96/164

mode enumeration grid, default The display mode of the grid
pageMessage string Any string value Message to display in

paginationbar when the
component starts paginating the
results

scroll boolean true, false Controls scroll behavior
selection enumeration row, cell, default Determine selection mode
style string CSS Syntax Overrides the component's

default style

Child Elements

row
The row element uses a match attribute to select nodes of the data.

Name Type Values Description
height measure values integer (px) Height in pixels
match string Xpath Expression Required. XPath expression

relative to the data bound

column (child element of row)
The column elements use a match attribute to select nodes of the data.

Name Type Values Description
align enumeration left, right Alignment of text inside column

cells
display string match Selection of data to display.

XPath expression relative to the
data bound to the match attribute

draggable boolean true, false Decides if column should be
draggable

filter boolean false, true Allow filtering in column
icon string URL Icon to display in column header

in front of column label
label string Any string value The label text
look enumeration default, classic, white Defines the look of the cell
match string Xpath Expression Required. XPath expression

relative to the data bound to the
parent row

name string unique name Unique identifier for the column.
This value is displayed in the
column if no label is provided

scroll boolean false, true Decides if scroll should be added
to the cell if content length
exceeds cell width

sort string ascending, descending Order in which to sort. Sorting is
case insensitive.

title string Any string value Tool-tip text for column
type string alpha, numeric, integer, float,

int, pubdate
Alphabetical or numerical sorting

width measure values integer (px), percent (%) Width of the column.

Actions
disable, enable, hide, show

Events
ContextMenu, Drop, Delete, DoubleClick, Header, HeaderContextMenu, Return, Select

Methods
deselect, getValue, hideColumn, selectAll, selectFirstRow, selectLastRow, showColumn, sortColumn, update

Syntax and Examples
Observe that this example needs to be bound to the data provided below in order to work.

1 <grid name="gridExample" width="auto" height="auto" selection="row" datachange="false" inset="false">
2 <row match="component" height="50">
3 <column width="60" name="Name" match="@name" display="." />
4 <column width="40" name="Tag" match="@tag" display="." />
5 <column width="80" name="Group" match="@group" look="classic" />
6 <column width="160" name="Description" match="documentation/description"/>
7 </row>
8
9 <rule match="documentation/description">

10 <label style="font-weight: bold; font-family: verdana; font-size: 15px; padding-top: 2px;"/>
11 </rule>
12 </grid>

Example: UI XML for the Grid component

1 <components>
2 <component name="Accordion" tag="Component" group="UI XML">
3 <documentation>
4 <description>Accordion description</description>
5 </documentation>
6 </component>
7 <component name="Browser" tag="Component" group="UI XML">
8 <documentation>
9 <description>Browser description</description>

10 </documentation>
11 </component>
12 <component name="Button" tag="Component" group="UI XML">
13 <documentation>

XIOS/3 Developer Manual - 2022-06-09 97/164

14 <description>Button description</description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for the Grid component

Related Components
None available.

Group
Defines a group container component that will group several components and let them share behavior.

Usage
The Group component alows several similar components to share behavior, which is controlled by the mode attribute. The most important of
these is the mutex mode which allows for only one component to be selected or visible at any given time. Some components such as radio
buttons will (when grouped) exhibit this behavior regardless of if this attribute is set.

The same attribute can be set as toggle, which will make a ButtonBox appear as selected (active), while also using the mutex behavior. The
switch mode will also make buttonboxes appear selected but does not have any mutex relationship which means that several buttons can be
selected at the same time.

For layout purposes you can use the align attribute which will determines the alignment of all components within the group. There is also the
hide attribute which, if set to true, will hide the group and all components it contains.

Details
Component Type: Placeholder

Component Properties: High Level Element, Wrapper Component

Parent Elements: Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
align enumeration right, left, center Sets the alignment of the

components that are located
within the group

height measure values integer (px) The height of the component
hide boolean true, false If set as true the group will be

hidden
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
mode enumeration default, mutex, switch, toogle Sets the behavior mode of the

group
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
value string Any string value Preselected value or component

inside group
width measure values integer (px) The width of the component

Child Elements
None available.

Actions
enable, disable, hide, show

Events
Select

Methods
getValue, setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <group name="group1" mode="mutex">
2 <radio name="radio1" postLabel="One" value="1"/>
3 <radio name="radio2" postLabel="Two" value="2"/>
4 <radio name="radio3" postLabel="Three" value="3"/>
5 </group>

Example: UI XML for the Group component

XIOS/3 Developer Manual - 2022-06-09 98/164

Related Components
None available.

Image
Defines a component that makes it possible to display an image. The supported types are GIF, PNG and JPEG format.

Usage
The image component works by simply adding a URL to an image in the src attribute. The image will be rendered in its full size, however you
can use the scale attribute to make the image fit in to the component that you want to.

The image component has two layout attributes, the align and valign. Where align is the attribute to set the horizontal alignment of the
image, and valign is the vertical alignment of the image.

If the scale attribute is set to true it will make the image scale to fit the defined size otherwise it will be displayed as the actual size. There is
also the possibility to make the image a link by setting the type attribute to link.

By referecing another to another image in the hoversrc attribute you can change the image source when you hover your image component.

Details
Component Type: Atomic

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px) The height of the image
src string URL Path to the image to display
width measure values integer (px) The width of the image

Optional Attributes

Name Type Values Description
align enumeration right, left, center Horizontal alignment
hide boolean false, true Defines if the image should be

hidden by default
hoversrc string URL Path to the image to display while

hovering
scale boolean true, false Scale the image to fit width and

height
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
type enumeration default, link Sets the image's behavior type
valign enumeration top, middle, bottom Vertical alignment

Child Elements
None available.

Actions
hide, select, show

Events
ContextMenu, DoubleClick, Drop, Select

Methods
getValue, setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <image name="imageSave" src="xios/icons/applications/48x48/disk_blue.png" title="Floppy Disk" align="right"/>

Example: UI XML for the Image component

Related Components
None available.

Input
Defines an single-line input field that is editable that can be styled several different ways.

Usage
The main purpose of this component is to allow end-users to insert information which later can be processed. This component is entirely
controlled by attributes.

XIOS/3 Developer Manual - 2022-06-09 99/164

The enabled attribute is used to limit end-user interaction by graying out the input field, which is accomplished if the attribute is set to false.
The default attribute displayes the default text inside the input field when no data is bound to it.

The focus attribute is used to focus (select) the input field. If several input fields have the attribute set to true, the last rendered will be
focused. The length attribute is used to limits the number of characters that can be inserted.

This component allows for heavy styling using the look attribute. There are two three types of looks. First the default, which will create a blue
input field, while white will create a white input field. Both of these have rounded corners. Observe that you can't apply custom styling on the
input field.

The type attribute controls what type the input field should be. The default value will just render a normal input field, the value counter will
render an input field with buttons to increase and decrease the value. A default value must be set or bound to the input field in order for it to
work. The value password will hide the characters written and replace them with asterisks. The value new-password will work the same as
password, but indicate to any password manager that they shouldn't attempt to pre-fill any values. When it is set as numeric it will only
accept numbers, which makes it useful for inputting only numerical values. Note that this type will also allow you to define the maxValue and
minValue attributes to set the upper and lower limit of the acceptable numeric value inside the input field. The default values are 9999 for
maxValue and -9999 for minValue. You can also define the size of the increment by defining a number in the step attribute, which has the
default value of 1, meaning that it will increase or decrease by one.

When using the icon attribute an inline button will be displayed that once clicked will fire the "Select" event.

Details
Component Type: Atomic

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%) The width of the component

Optional Attributes

Name Type Values Description
placeholder string Any string value A text visible in the input which is

removed at first input
default string Any string value Default text of input field of

component
enabled boolean true, false Set to false the component will be

grayed out
focus boolean true, false If the component should be

focused
hold boolean true, false If component should stop

listening to data updates
icon string URL Icon to display as an inline button

in the input field
length numerical [0...n] Sets the maximum length of the

text string that can be entered
look enumeration default, graphite, blueold Defines the look of the

component
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
maxValue numerical 0...n Maximum number when numeric

type
minValue numerical 0...n Minimum number when numeric

type
mode enumeration default, text If the inputted text should be

handled as an encoded URI or
plain text

step numerical [1...n] The size of incrementation when
in numeric mode

style string CSS Syntax Overrides the component's
default style

tabindex numerical 1...[n] Defines the tab order
title string Any string value Tool-tip text
tstyle string CSS Syntax Style for text in input field
type enumeration default, counter, password, new-

password, numeric, selector, icon
The type of mode that should be
used

Child Elements
None available.

Actions
enable, disable, hide, show

Events
Blur, Change, Escape, Focus, Key, Return, Select

Methods
activate, clear, getValue, setLabel, setValue

XIOS/3 Developer Manual - 2022-06-09 100/164

Syntax and Examples
These examples work on the fly and does not need to be bound to data to work.

1 <input name="inputName" width="100" default="Enter your name and press enter"/>

Example: UI XML for the Input component (Normal input field)

1 <input name="inputPassword" width="100" type="password"/>

Example: UI XML for the Input component (Password input field)

1 <input name="inputCounter" width="100" default="1" type="counter"/>

Example: UI XML for the Input component (Counter input field)

Related Components
None available.

Item
Defines items in lists, menus, plates.

List Item
Menu Item
Plate Item

Related Components
List, Menu, MenuBar, Plate

List Item
Defines an item in the List component.

Usage
The match attribute in the item element defines what elements in the data XML that should be bound, and the display attribute defines what
will be displayed of the list item using XPath expressions.

Details
Component Type: Atomic

Component Properties: Child Element

Parent Elements: List

Child Elements: No child elements

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
display string @name, Expression Relative to the match attribute.

The text displayed
match string @name, Expression What data is to be selected

Optional Attributes

Name Type Values Description
class string Any string value CSS class for item default state
selectionClass string Any string value CSS class for item select state
hoverClass string Any string value CSS class for item hover state
icon string URL Adds icon in front of row

Actions
None available.

Events
None available.

Methods
None available.

Syntax and Examples
See List component.

Menu Item
Defines static menu items in application menus.

Usage

XIOS/3 Developer Manual - 2022-06-09 101/164

Menu items can exhibit radio button behavior and checkbox behavior. To define which item should be selected when menu items are grouped,
using the group attribute, you use the select action on the menu item.

You can also create checkable menu items by setting the checkable attribute to true. This will enable the menu item to act as a checkbox
component. Observe that when you utilize the checkable or group behavior that you cannot use any icons, since the default icons for this will
be used.

A menu item cannot use both the group attribute and the checkable attribute. If both are set the group attribute will have higher priority.

To create a submenu you should use the submenu attribute. The submenu attribute value should be set to the name of the menu component
that you wish to appear as a submenu.

The hotkeytext attribute is used to display a secondary text in a menu item. It is designed primarely for hotkey commands, thus simply
allowing the end-user to learn the keyboard hotkey for that specific action.

Details
Component Type: Atomic

Component Properties: Child Element

Parent Elements: Menu

Child Elements: No child elements

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
text string Any string value Text to be shown in the menu

Optional Attributes

Name Type Values Description
checkable boolean false, true If the item should be checkable
checked boolean false, true If the item should be prechecked
enabled boolean true, false Set to false the component will be

grayed out
group string Any string value Name of group. Used when

grouping items
hide boolean false, true Decides if the component should

be hidden
hotkeytext string Any string value Secondary text used to indicate

hotkey command.
icon string URL Path to icon for the item
selected boolean false, true If item is part of a group, have

this item default selected
style string CSS Syntax Overrides the component's

default style
submenu string Any string value Name of submenu to open when

selecting item
title string Any string value Tool-tip text

Actions
enable, disable, hide, show

Events
Release, Select

Methods
getValue, setIcon, setSelect, toggleCheckable

Syntax and Examples

1 <menubar name="menuBar" draggable="true" position="top">
2 <menu name="mFile" caption="false" text="File">
3 <item name="mCheck" text="Checkable Item" checkable="true"/>
4 <item name="mNew" text="New" icon="xios/icons/applications/16x16/document_new.png" submenu="mTools"/>
5 </menu>
6 </menubar>
7 <menu name="mTools">
8 <item name="mTool1" text="Tool 1"/>
9 <item name="mTool2" text="Tool 2"/>

10 </menu>
11

Example: Example for checkable menu items

See Menu component for additional examples.

Plate Item
Defines static items in the Plate component.

Usage
Item elements are single options available inside the plate. Each item element represents a single option. The element itself contains
information about what the option should display.

Details

XIOS/3 Developer Manual - 2022-06-09 102/164

Component Type: Atomic

Component Properties: Child Element

Parent Elements: Plate

Child Elements: No child elements

Can Use Rules: No

Attributes

Required Attributes
No required attributes.

Optional Attributes

Name Type Values Description
colorbox string / numerical #[rrggbb] The color of the box icon
selected boolean false, true Defines if the item should be

selected
title string Any string value Tooltip text
value string Any string value The value of the selected option

Actions
None available.

Events
None available.

Methods
None available.

Syntax and Examples
See Plate component.

Label
Defines a text label, used mainly to display small or large amounts of text.

Usage
This component is used to create a label text. It has the ability to contain a default text until data is bound to the component and also to act
as a link. The text is defined using the default attribute. The actual text can be dynamically added when binding data to the component, which
will remove the text value previously displayed.

The label component offers several attributes to style the label. The bgcolor is used to set the background-color of label. The color attribute
sets the color of the text, and the fgcolor attribute sets the text-color while the end-user is hovering over the component. There are also the
bold attribute which can be used to make the label bolded, the font attribute white is used to select the font in which the text will be
displayed. Finally the size attribute defines the size of the characters.

Labels can also acts as links, this is possible if the type attribute is set to link. This will cause the label to display a underlining when hovered.
The underlining can be removed by setting the decoration attribute to none. Once your label has been defined as a link you can also style it.
The hoverClass allows you to define the CSS class taht will be used when the end-user is hovering the component.

Using the setValue method and the format attribute the label component might display date and time related information. If the format
attribute is set to timestamp, then setValue might be used to update the timestamp value. Observe that the the timestamp will only be
updated the passed information will not be displayed.

Details
Component Type: Atomic

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
bold boolean true, false If the text should be bolded
bgcolor string, numerical #[rrggbb] The text's background color on

hover
color string, numerical #[rrggbb] The color of the text
decoration enumeration default, none If an underlining should be

displayed
default string Any string value Default text to show, when no

data is bound
disableClass string Any string value CSS class used when the label is

disabled

XIOS/3 Developer Manual - 2022-06-09 103/164

ellipsis boolean true, false If ellipsis should be used when the
text is cut off

enabled boolean true, false If interaction should be possible
with the component

fgcolor string, numerical #[rrggbb] Sets the text color on hover
font string Any string value Defines the font-family to use on

the text
format enumeration default, timestamp, date, time Defines what information should

be displayed in the label
height measure values integer (px) The height of the component
hide boolean false, true Defines if the component should

be hidden upon start up
hoverClass string Any string value CSS class used when hovering

over a link label
icon string URL Defines the icon to use
iconPos enumeration left, right Defines the position of the icon
iconsize numerical [0...n] Sets the maximum size of the

icon, in pixels.
label string Any string value The label text
look enumeration default, bold, boldwhite, white Graphical look of the label
lstyle string CSS Syntax Overrides the default label style

using CSS
size numerical [0...n] Defines the size of the text
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
type enumeration default, link Sets the behavior of the label
value string Any string value Default text to display, when no

data is bound
width measure values integer (px) The width of the component

Child Elements
None available.

Actions
hide, show

Events
DoubleClick, Drop, Select

Methods
setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <label name="label1" width="100" bold="true" type="link" fgcolor="#ff0000" default="This is a label"/>

Example: UI XML for the Label component

Related Components
None available.

List
Defines a list component that displayes item entries populated by the bound data, which can be selected in different ways. Unlike the
ComboBox where only one option can be seleced, the list component makes it possible to select several options.

Usage
The list component is useful for dealing with many entires and offers a simple but flexible way of render it to end-users. The component is
controlled by attributes and child elements. First is the header attribute which displayes a header in the top of the component.

The mode attribute is to control the behavior of the component. The default mode value is the multiple, which allows for multiple selections
and where the lists is rendered as a normal list. The mutex mode allows for only one single selection. Finally the columns mode will render the
list as two separate lists, were selections are made by moving entries from left to right.

Using the attributes bgClass, headerClass and itemClass we can apply CSS classes to the different parts of the list component.

The list has two child elements, the header and the item. Here the header creates an unselectable text, and the item creates selectable text
options. Both use the display and match attributes to set an Expression to determine what data should be selectable and what should be
displayed.

Using setSelection you can set define the selection that will be used in the list.

Details
Component Type: Structure

Component Properties: High Level Element, Data Driven Component

Parent Elements: Panel

Child Elements: header, item

Can Use Rules: No

Attributes

XIOS/3 Developer Manual - 2022-06-09 104/164

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px) The height of the component
width measure values integer (px) The width of the component

Optional Attributes

Name Type Values Description
bgClass string Any string value Name of the CSS class that

controls the background
draggable boolean false, true If list items should be draggable
header string Any string value If set a header label will be shown
headerClass string Any string value Name of the CSS class that

controls the header
itemClass string Any string value Name of the CSS class that

controls the items
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
mode enumeration columns, multiple, mutex Sets the behavior mode of the

component
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
tabindex numerical [0...n] Tab stop index of the component

Child Elements

header
The header element defines headers in the list component. The match attribute in the item element defines what elements in the data XML
should be considered header items, and the display attribute defines the look of the header using XPath expressions.

Name Type Values Description
display string @name, Expression Required. Relative to the match

attribute. The text displayed
match string Expression Required. What data is to be

selected.
class string Any string value Optional. CSS class for section

item
The item element defines items in the list component. The match attribute in the item element defines what elements in the data XML that
should be bound, and the display attribute defines what will be displayed of the list item using XPath expressions.

More information

Actions
hide, show

Events
ContextMenu, DoubleClick, Drop, Empty, MoveItem, Release, Select

Methods
resetSelection

Syntax and Examples
Observe that this example needs to be bound to the data provided below in order to work.

1 <panel name="mainPanel" type="row" look="plate" padding="5">
2 <list name="list1" header="Components" mode="columns" width="auto" height="210">
3 <header match="components" display="concat('Components',':')"/>
4 <item match="component" display="@name"/>
5 </list>
6 </panel>

Example: UI XML for the List component

1 <components>
2 <component tag="Component" name="Accordion" group="UI XML">
3 <documentation>
4 <description>Accordion description</description>
5 </documentation>
6 </component>
7 <component tag="Component" name="Browser" group="UI XML">
8 <documentation>
9 <description>Browser description</description>

10 </documentation>
11 </component>
12 <component tag="Component" name="Button" group="UI XML">
13 <documentation>
14 <description>Button description</description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for the List component

Related Components
None available.

XIOS/3 Developer Manual - 2022-06-09 105/164

ListView
Defines a very flexible component that is driven by an XSLT document as well as data, which means in order for the component to work you
need to have a external XSLT document and you need to have an XML data document bound to the component for it to display anything.

By binding data to the component and then transforming that data using XSL transformations you can make data lists that are clickable,
selectable and draggable.

Usage
It is a very flexible component when it comes to rendering content since it allows you to create pretty much you own component by designing
it and determining what events will be made when clicking on certain elements.

In the listview the developer is able to use HTML, CSS and JavaScript which allows for a great looking and dynamic component.

There are several attributes that are used to control the look and behavior of the listview. First is the deselect attribute, which makes it
possible to deselect a selected value inside the list. The focus attribute makes to listview scroll to the selected value. Also note that the height
attribute which defines the height of the component will when set to "*" renders the listview depending on the height of the rendered
contents. If you set it to "auto" it will take the remaining space.

The normal listview will escape the < and > characters, these can however be obtained by setting the listview mode attribute to xml, so that
they are not escaped.

Setting the dimension attribute to true will allow you to extract from height and width from the listview component. They are available as
.getParam('height') and .getParam('width').

In the XSLT document, there needs to be an enclosing div element, which must have the selectionBase attribute. This is a required attribute
which is needed for unique selections. It is this value together with the underscore that form the prefix used in id's of all clickable items.
There are also two additional attributes called selectionClass and hoverClass which are used change the CSS class of the selected item and
change the CSS class of the hovered item. See the example at the bottom of this page to understand the context of these attributes.

The item level elements, that are to be clickable, have three required attributes. The id attribute which is to be unique and consists of the
prefix we mentioned earlier and the position() function. They are constructed by selectionBase_[n] where n is a item unique number, such as
its position in the XML document. The position attribute holds the attribute of the item, and is also generated by the position() function. Finally
the xpath attribute contains the absolute xpath of the item.

The special case attribute is the triggerEvent, which is not required. It does however offer nice possibilities, since it allows for creating and
receiving listview specific events. In the example below we create a triggerEvent called cName which in later can listen for in the Process XML.

Listviews support multiple selections and lasso features. The multiple selection feature only works within the same data document. This is
possible by setting the lasso attribute to true. You can also support multiple selections without the lasso feature, by setting the multiple
attribute to true. Observe that both of these are false by default. Multiple selection is also possible by using CTRL+key or Mouse click for
selection.

Using setSelection you can set define the selection that will be used in the listview.

Lazy Loading of Images

The listview component allows for lazy loading of images. Meaning that they will load after the the application has been rendered making it
faster and more responsize on start up. To be able to use this feature rename your img HTML elements to ximage elements and then set a
mode attribute with the value "async".The image created should also be cross-browser capable, meaning that the framework will make the
image appear correctly in all supported browsers.

JavaScripting

The listview can contain a single script tag in the rendered code from which JavaScript can be included and executed.

Details
Component type: Structure

Component Properties: High Level Element, XSLT Driven Component, Data Driven Component

Parent Elements: Container, Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px), percent (%), auto, * The height of the component
width measure values integer (px), percent (%) The width of the component
href string URL Reference to XSLT document

used for rendering the listview

Optional Attributes

Name Type Values Description
clickeditable boolean false, true Enable ability to rename items by

clicking on them
deselect boolean true, false If deselection should be possible
dimension boolean false, true Make it possible to extract height

and width from listview
focus string false, true, x, xy, view, center,

bottom, top, scroll
If/How the listview should be
scrolled to the selection

label string Any string value The label text
lasso boolean false, true Allow lasso selection of multiple

items
lstyle string CSS Syntax Overrides the default label style

using CSS
mode enumeration default, xml Decides what type of mode to

use
moving string false, true, horizontal, vertical,

inside
Defines possibilities to drag and
position items inside the listview

multiple boolean false, true Allow multiple selections

XIOS/3 Developer Manual - 2022-06-09 106/164

partial-updates boolean true, false If partial updates to the rendered
content should be made instead
of full re-rendering of content

reload boolean true, false If F5 reloading should be turned
off

rightselect enumeration true, false, noevent If rightclick selection should be
enabled or enabled without
returning av event

scroll enumeration auto, scroll, hidden, false Controls the scroll behavior
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
wait string Any string value Text to display while loading data

to component

Child Elements
None available.

XSLT
The XSLT must generate HTML of a certain format. It needs a container div with the following attributes:

Attributes (Root Level)

Attribute Type Description
selectionBase string Required. Text that (together with

underscore) will prefix the ID of all div
elements that are items

selectionClass string Optional. Class applied to selected list items
hoverClass string Optional. Class applied when hovering list

items

The HTML elements (divs) that represent list items also need certain attributes:

Attributes (Item Level)

Attribute Type Description
id string Required. ID of form [selectionBase]_[n], for

example if selectionBase attribute in
container is "myitem", then IDs are
generated by "myitem_{position()}"

position number (positive integer) Required. Position of element, use
{position()}

xpath XPath expression Required. The absolute xpath of the node. For
value see the example below

draggable boolean Optional. Default is false. if item should be
draggable

dragover boolean Optional. Default is false. If target item space
should be visible while hovering with a
draggable item

dragvisible boolean Optional. Default is false. If items dragged
should be visible (60% opacity).

title string Optional. Tool-tip for element
unselectable boolean Optional. Defines if the item should be

unselectable.

TriggerEvent is an attribute that can be applied to any HTML element inside the item level element. That means it can be applied to img, span
and div tags as long as they are located inside the item element of the listview.

The triggerEvent attribute looks like any attribute but will make an special event, that you can catch in the process file. The event made by
the triggerEvent is whatever the string value in the attribute is, meaning that it is whatever you want it to be.

Attributes (Sub Item Level)

Attribute Type Description
triggerEvent string Optional. A string value that can be caught

like any regular event.

Actions
hide, show

Events
ctrl+a, ContextMenu, Drop, DoubleClick, Edit, EditEnd, Menu, MoveItem, Release, Return, Select, TriggerEvent

Drop Event Coordinates
You can acquire the coordinates to which something has been dropped. The XML node dropped (remember that files are just atom:entry
nodes) will be available in the trigger (!) and the coordinates will be available in !%x and !%y repectively.

1 <alias name="triggerData" value="!"/>
2 <alias name="x" value="!%x"/>
3 <alias name="y" value="!%y"/>

Methods
activate, addExternalDocument, clear, edit, focusSelection, getParam, getSelectedItem, getValue, haveSelection, resetSelection, setParam,
setView, updateRedraw

Syntax and Examples

XIOS/3 Developer Manual - 2022-06-09 107/164

Observe that this example needs to be bound to the data provided below in order to work and that it consists of an UI XML part, a XSLT file
and data.

Example (UI XML)

1 <listview name="listviewExample" scroll="auto" reload="false" width="auto" height="auto" href="home://Documents/listview.xsl"/>

Example: UI XML for the ListView component

Example (XSLT)

1 <?xml version="1.0"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xios="urn:x-i-o-s:util" version="1.0">
3
4 <xsl:template match="components">
5 <div selectionBase="componentOption" selectionClass="selectedItem" hoverClass="hoverItem">
6 <xsl:apply-templates select="component"/>
7 </div>
8 </xsl:template>
9

10 <xsl:template match="component">
11 <div xpath="{xios:absolute(.)}" id="componentOption_{position()}" position="{position()}" draggable="false" class="regularItem">
12 <div triggerEvent="cName"><xsl:value-of select="@name"/></div>
13 <div triggerEvent="cGroup"><xsl:value-of select="@group"/></div>
14 </div>
15 </xsl:template>
16
17 </xsl:stylesheet>

Example: XSLT for the ListView component

The above XSLT example will match the root (components) of the XML file below, and create a container div which is required for listviews.
This div will has the selectionBase attribute which we will set to componentOption. It can be set to anything, as long as it is unique for your
application.

We proceed to apply templates on the component element. There we create a variable named xpath which will contain the absolute xpath of
every component element.

Next we create a div element with some special attributes. These are xpath, id, position and draggable. The xpath attribute will contain the
xpath variable and thus the absolute xpath of the book element.

The id attribute will contain a combination of the value of selectionBase and the position of the element; thus creating a unique name. The
position attribute will contain the position of the element. And finally the draggable attribute will if set to true allow the item to be draggable
across the listivew.

Inside the div we will output the value of the name attribute of the component element using xsl:value-of.

Example (XML)

1 <?xml version="1.0"?>
2 <components>
3 <component name="Accordion" tag="Component" group="UI XML">
4 <documentation>
5 <description>Accordion description</description>
6 </documentation>
7 </component>
8 <component name="Browser" tag="Component" group="UI XML">
9 <documentation>

10 <description>Browser description</description>
11 </documentation>
12 </component>
13 <component name="Button" tag="Component" group="UI XML">
14 <documentation>
15 <description>Button description</description>
16 </documentation>
17 </component>
18 </components>

Example: XML data file for the XSLT example above

Related Components
Render

Map
Defines a map component utlizing Google Maps.

Usage
The component creates an instance of Google Maps. An additional built in functionality is that you are able to bind XML data to the component
which are then rendered as markers on the map according to the coordinates in the data document. By modifying that data document you
can effectively control what is displayed on the map, clear the markers and add new ones.

There are several attributes that allows you to customize the behavior and appearance of the component. You can override the default height
and width values of the component by adding their respective attributes. The zoomlevel attribute defines the zoom level that is used by the
map. An appropriate value for this attribute might be about 5 or 6 depending on what you want the end-user to see. You can also define a
start position for the map using the mapcenter attribute. Observe that the value for this attribute should be a coordinate for example:
"58.416139, 15.626392"

The iconMarker attribute defines the icon that will be displayed where the marker is loaded. By using the iconSelect attribute you can
define the icon to use once the end-user starts to drag the marker. It might perhaps be a similar icon to indicate that the marker is being
dragged. The iconTarget attribute defines which icon should be displayed once a search result has been marked.

Details
Component Type: System

Component Properties: -

Parent Elements: Panel

Child Elements: None available

Can Use Rules: No

XIOS/3 Developer Manual - 2022-06-09 108/164

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
controls boolean true, false Defines if controls should be

visible
height measure values integer (px), percent (%) The height of the component

which will overrule the default
value

iconMarker string URL URL to the icon displayed when
data is bound to the map

iconSelect string URL URL to the icon displayed when
marker is selected

iconSize numerical integer (px) The size of marker icons on the
map.

mapcenter string decimal value; decimal value Coordinates to define map center
maptype enumeration roadmap, satellite, hybrid,

terrain
Defines which maptype to use
when rendering initial map

style string CSS Syntax Overrides the component's
default style

width measure values integer (px), percent (%) The width of the component
which will overrule the default
value

zoomlevel numerical 1...[n] Defines zoom level to be applied
on the map

Child Elements
None available.

Actions
None available.

Events
Click, Ready, Move

Methods
getLat, getLng, getMapType, getZoom, searchMap

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <map name="map" width="100%" height="100%" iconMarker="icons/iconMarker.png" iconSelect="icons/iconSelect.png" iconTarget="icons/iconTarget.png"/>

Example: UI XML for the Map component

Related Components
None available.

Media
Defines a media component that can play audio and video using "Microsoft Windows Media Player".

Usage
The component can be entirely controlled by methods but has also built in controls which are visible when the controls attribute has been set
to true. However the component can be completely hidden by setting the width and height attributes 0px.

Using the mode attribute one can easily define the purpose mode of the component. The attribute can be set to either "audio", which is the
default state, or to "video".

The progress attributes defines if a progressbar should be displayed while playing back the media file. It will appear as a slider attached to
the player and can be used to set a new progress position for the file.

When a new songs starts to play the component will fire a "Select" event.

Details
Component Type: System

Component Properties: Child Element

Parent Elements: Panel

Child Elements: None available

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

XIOS/3 Developer Manual - 2022-06-09 109/164

Optional Attributes

Name Type Values Description
controls boolean true, false Decides if controls should be

visible
height measure values integer (px), percent (%) The height of the component
mode enumeration audio, video The playmode of the component
progress boolean true, false Decides if a progressbar should

be displayed
width measure values integer (px), percent (%) The width of the component

Child Elements
None available.

Actions
None available.

Events
Complete, Loading, MediaEnded, MediaRange, Select, UpdateTime

Methods
adjustVolume, getCurrentPosition, getVolume, next, pause, play, previous, repeat, setMode, setMute, setValue, setVolume, showControls,
shuffle, stop

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <media name="mediaControl" controls="false" progress="false" mode="audio" height="0"></media>

Example: UI XML for the Media component

Related Components

Menu
Defines a menu plate that contains items, which are defined as child elements, or data items which are control by or Rules.

Usage
The component itself acts as a wrapper (container) for items and it controlled by attributes and can be evoked from either a MenuBar or by a
ContextMenu.

By setting the caption attribute to true and setting the text attribute you can create a caption footer. You can also grey out the entire menu by
setting the enabled attribute to true, this is only available if the menu is part of another menu. The icon attribute allows you to add an icon to
the menu option, which will be displayed to the left of the text.

The child element item, has several style and function attributes which can be used. The attributes name and text are required since they are
needed to make a basic menu option. Also here the enabled attribute is available with the same function.

Menu items can also be grouped together using the group attribute, and then determine which menu option will be preselected using the
selected attribute. The group behavior is also known as mutex functionality.

Details
Component Type: Placeholder

Component Properties: Child Element, Wrapper Component

Parent Elements: MenuBar, View

Child Elements: DataItem, Divider, Menu Item

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
caption boolean true, false If a caption text should be shown

at the bottom
enabled boolean false, true If the menu should be enabled

when part of menu
inlinemenu string Any string value If a menu should be displayed as

a titlemenu instead
look enumeration default, graphite Graphical look of the menu
style string CSS Syntax Overrides the component's

default style
submenu string Any string value Reference to menu component to

load menu options
text string Any string value Text to show if caption is set to

true

title string Any string value Tool-tip text

XIOS/3 Developer Manual - 2022-06-09 110/164

Child Elements

Item
Defines static menu items in application menus. Menu items can exhibit radio button behavior and checkbox behavior. To define which item
should be selected when menu items are grouped, using the group attribute, you use the select action on the menu item.

More information

Actions
enable, disable, hide, show

Events
Init, Show

Methods
setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <menu name="mFile" caption="false" text="File">
2 <item name="mOpenDoc" text="Open" icon="xios/icons/applications/16x16/document_into.png"/>
3 <divider name="div1"/>
4 <item name="mNew" text="New" icon="xios/icons/applications/16x16/document_new.png"/>
5 <divider name="div2"/>
6 <item name="mSaveDoc" text="Save" icon="xios/icons/applications/16x16/disk_blue.png"/>
7 <item name="mSaveAsDoc" text="Save As..." submenu ="mFileTypes" icon="xios/icons/applications/16x16/save_as.png"/>
8 </menu>

Example: UI XML for the Menu component (with submenus)

Related Components
DataItem, Item, MenuBar

MenuBar
Defines a menu bar that is filled with menu component elements. The menubar component only defines a place and a frame for menu
components, it does not define the menu plates or menu items.

Usage
The MenuBar is used to create a regular menubar (one that is located in the top of most applications) and that has expandable menu plates
containing one or more menu items which can also be data driven.

The menubar component can also be filled with buttonbox components when the attribute "type" is set to tab.

If the position attribute is set to right or left the type attribute must be set to tab.

Details
Component Type: Navigation

Component Properties: High Level Element

Parent Elements: Panel, View

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
position enumeration top, bottom, right, left Position of the menubar

Optional Attributes

Name Type Values Description
compact boolean false, true Defines if the menubar should be

positioned next to the window
handling buttons

label string Any string value The label text
look enumeration default, graphite Visual apperance for the menubar
lstyle string CSS Syntax Overrides the default label style

using CSS
opacity numerical 100, [0-100] Percentage of the opacity

(visibility)
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
type enumeration default, tab appearance type of menubar

Child Elements
None available.

Actions

XIOS/3 Developer Manual - 2022-06-09 111/164

hide, show

Events
None available.

Methods
None available.

Syntax and Examples
These examples work on the fly and does not need to be bound to data to work.

1 <menubar name="menuBar" draggable="true" position="top">
2 <menu name="mFile" caption="false" text="File">
3 <item name="mOpenDoc" text="Open" icon="xios/icons/applications/16x16/document_into.png"/>
4 <item name="mNew" text="New" icon="xios/icons/applications/16x16/document_new.png"/>
5 <item name="mSaveDoc" text="Save" icon="xios/icons/applications/16x16/disk_blue.png"/>
6 <item name="mSaveAsDoc" text="Save As..." icon="xios/icons/applications/16x16/save_as.png"/>
7 </menu>
8 </menubar>

Example: UI XML for the MenuBar component

1 <menubar name="menuBar" draggable="true" type="tab" position="top">
2 <group name="fileGroup" mode="mutex">
3 <buttonbox name="bbNew" icon="xios/icons/applications/24x24/document_new.png" text="New" title="New"/>
4 <buttonbox name="bbDelete" icon="xios/icons/applications/24x24/document_delete.png" text="Delete" title="Delete"/>
5 </group>
6 <buttonbox name="bbEdit" icon="xios/icons/applications/24x24/document_edit.png" text="Edit" title="Edit" mode="toggle"/>
7 </menubar>

Example: UI XML for the MenuBar component using buttonboxes with mutex and mode toggle

Related Components
ButtonBox, Item, Menu

Panel
Defines a panel which are infrastructure building blocks in applications, used for arranging other components and creating a desirable layout.

Usage
Panels are entirely controlled by their attributes. You are offered several ways of styling your panel using the look attribute which is used to
define the graphical look of the panel. There are many different types of values for this attribute. The default value will render a blue
background. The graphite look is only available if the mode attribute has been set to expander.

By using the style attribute you can completely restyle your panels. There are however several other attributes that are used to style the
panel. The bgcolor attribute is used to set the color of the title of panels that have one. While border sets the border width, and the opacity
attribute sets the visibility in percent. The latter means that you can make your panels transparent.

Several attributes also control the position of the components, such as the align attribute which sets the horizontal alignment of all
components within it and the valign which sets the vertical alignment.

The type attribute controls the type of layout the panel should use. Several options are available. The flow attribute will allow the components
inside the panel to line up next to each other if space if available and then start at the next row if the space is to short. When the attribute is
set to column, every component inside the panel will get its own column. While when type is set to row, every component will get their own
row.

The fill attribute is a placeholder attribute that, if set to true will fill the remaining space in the panel with a invisible panel. Hide is a very
useful attribute that completely hides the panel and all components within when set to true.

When you are working with the TabStrip component or the Accordion the attribute selected is used to define which panel is preselected.

The mode attribute defines what visual mode the panel should use. The default value will create a regular panel, while the value closable will
have a header and a button for closing the panel. The button behavior is built in so there is no need to use Process XML to do so. The frame
and heading modes will create panels with prominent headers. Frame mode has a bigger title while the heading mode has a smaller title.
Setting this attribute to "glossy" for a frame looking panel and "expander" will make it possible to expand and collapse the panel only
displaying the title bar. Other panel frame modes includes aqua, aquabar, round and side.

Observe that if you set a title on a panel it is not a tool-tip, it is a header. If a mode is not chosen and a title attribute is set the panel will
render a border that will make the panel appear to be inset (sunk in to the background).

Xlink can be used to show entire view files inside Panels, this is done by using the xlink attributes xlink:actuate, xlink:href and xlink:type
together with the xlink namespace.

As an optimization tip, try to set all your panels to fixed sizes, since it redrawing percent is much slowing.

Details
Component Type: Placeholder

Component Properties: High Level Element, Wrapper Component

Parent Elements: Panel, View

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%), auto The width of the component
height measure values integer (px), percent (%), auto The height of the component

Optional Attributes
XIOS/3 Developer Manual - 2022-06-09 112/164

Name Type Values Description
align enumeration left, right, center Sets alignment of child

components within the panel
bgcolor color [#rrggbb], transparent Specify the background color for

titled panels
border enumeration default, left, right Defines if a border should be used
closeable boolean false, true Defines if the panel should be

closable when part of a tabstrip
expanded boolean true, false Default state of panel when mode

is "expander"
fill boolean true, false Decides if an invisible element

should fill the remaining space in
the panel

hide boolean true, false If the panel and its contents
should be hidden when loaded

icon string Any string value Path to icon when used inside
other components like tabstrip
and accordion

label string Any string value The label text
look enumeration transparent, cell, white, alert,

dark, black, title, light, window,
window2, plategrad, plate, back,
gradient, gradient2, gradient3,
gradientblue, gradientgray, inset,
insetwhite, important, outset,
graphite, graphiteoutset, green,
pink, purple

Graphical look of the panel

lstyle string CSS Syntax Overrides the default label style
using CSS

menu boolean false, true Renders a small navigation arrow
in the title that when clicked fires
the "Menu" event

mode enumeration default, aqua, aquabar,
closeable, expander, frame,
glossy, header, round, side

Defines the visual mode of the
panel

opacity numerical 100, [0...100] Specifies the percentage of the
transparency

padding numerical [0...n] The amount of padding that
should be used

position enumeration default, bottomright Define positioning when type is
flow

resize boolean true, false Set to true if panel should be
resizable

scroll enumeration true,false, auto Controls the scroll behavior
selected boolean true, false If the panel is should be selected
style string CSS Syntax Overrides the component's

default style
tabcolor string colorname, [#rrggbb] Color of the tab of the panel when

using a tabstrip
title string Any string value The heading of the panel
type enumeration flow, column, row The layout to use for content

inside panel
valign enumeration top,bottom, center Vertical alignment of child

components
xlink:actuate enumeration onRequest When the view should be loaded
xlink:href string URL Path to the view file to use
xlink:type enumeration simple Type of link to use

Child Elements
None available.

Actions
hide, show

Events
Close, Drop, Init, Menu

Methods
getValue, maximize, restore, update, setTitle

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <panel name="panelContainer" type="row">
2 <panel name="panel0" height="50" look="white">
3 <label name="lab0" default="Normal panel without title attribute"/>
4 </panel>
5 <panel name="panel1" height="50" look="white" title="Regular Panel">
6 <label name="lab1" default="Normal panel with title attribute"/>
7 </panel>
8 <panel name="panel2" height="50" look="white" mode="closeable" title="A closable Panel">
9 <label name="lab2" default="Closable mode panel"/>

10 </panel>
11 <panel name="panel3" height="50" look="white" mode="frame" title="A panel with a frame">
12 <label name="lab3" default="Frame mode panel"/>
13 </panel>
14 <panel name="panel4" height="50" look="white" mode="header" title="When using the header mode">
15 <label name="lab4" default="Header mode panel"/>
16 </panel>
17 </panel>

XIOS/3 Developer Manual - 2022-06-09 113/164

Example: UI XML for the Panel component (All modes)

Related Components
None available.

Plate
Defines a plate component that serves as a container for item elements. Plate is often associated with the ComboBox component.

Usage
The reason that plate is a separate component is that several comboboxes can use the same plate, like in the example at the bottom of this
page. If separate components are utilizing the same plate they should stil display different selections.

The Plate is used to display items as options inside a ComboBox. This is accomplished by using rules to match data using Expressions and
output item elements, or by manually setting each item option.

Using setSelection you can set define the selection that will be used in the plate.

Details
Component Type: Placeholder

Component Properties: Child Element, Wrapper Component

Parent Elements: ComboBox

Child Elements: None available.

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px) The height of the component

Optional Attributes

Name Type Values Description
scroll boolean true, false If scroll should be visible
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements

item
Item elements are single options available inside the plate. Each item element represents a single option. The element itself contains
information about what the option should display.

More information

Actions
None available.

Events
None available.

Methods
getText, getValue

Syntax and Examples
The example works on the fly and does not need to be bound to data to work. In order for the second example to work it needs the data
provided below to be bound to the component.

1 <combobox name="cb_Components" width="150" height="14" editable="false">
2 <plate name="plate_Components" height="120" scroll="true">
3 <item value="A">A</item>
4 <item value="B">B</item>
5 <item value="C">C</item>
6 </plate>
7 </combobox>

Example: UI XML for the Plate component used inside a ComboBox component

1 <plate name="plate_Components" height="120" scroll="true">
2 <rule match="component">
3 <item value="{@name}">{@name}</item>
4 </rule>
5 </plate>
6 <combobox name="cb_Components1" width="150" height="14" editable="false" subplate="plate_Components"/>
7 <combobox name="cb_Components2" width="150" height="14" editable="false" subplate="plate_Components"/>
8

Example: UI XML for the Plate component used outside a ComboBox component where both comboboxes are using the same plate.

1 <components>
2 <component name="Accordion" tag="Component" group="UI XML">
3 <documentation>

XIOS/3 Developer Manual - 2022-06-09 114/164

4 <description>Accordion description</description>
5 </documentation>
6 </component>
7 <component name="Browser" tag="Component" group="UI XML">
8 <documentation>
9 <description>Browser description</description>

10 </documentation>
11 </component>
12 <component name="Button" tag="Component" group="UI XML">
13 <documentation>
14 <description>Button description</description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for example

Related Components
ComboBox

Radio
Defines a radio button, in the form of a clickable circle with an optional text label.

Usage
Several radio buttons can be combined using the group component. Together they will exhibit what is known as radio buttion behavior
(mutex). This will allow only one radio button within the group to be selectable at any given time.

When a radio component is evaluated using expressions it will return the value attribute (if checked) or an empty string if unchecked.

By using the postLabel or preLabel attributes you can set a label in front off or behind the radio component. The look attribute can be used to
control the visual appearance of the labels.

The value attribute contains the value that the radio component will evaluate to. When the component is intended to be preselected the
selected attribute is set to true.

Details
Component Type: Selector

Component Properties: High Level Element

Parent Elements: Panel

Child Elements: None available

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

Optional Attributes

Name Type Values Description
hide boolean false, true Defines if the component should

be hidden upon start up
label string Any string value The label text
look enumeration default, bold, boldwhite, white Graphical look of the label
lstyle string CSS Syntax Overrides the default label style

using CSS
postLabel string Any string value Text label placed after the radio

button of the radio component
preLabel string Any string value Text label placed in front of the

radio button of the radio
component

selected boolean true, false Set to true indicates that the
radio component is selected

style string CSS Syntax Overrides the component's
default style

title string Any string value Tool-tip text
value string Any string value Value represented by the radio

component

Child Elements
None available.

Actions
hide, show

Events
Release, Select

Methods
getValue, setValue

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

XIOS/3 Developer Manual - 2022-06-09 115/164

1 <group name="group1">
2 <radio name="radio1" postLabel="One" value="1"/>
3 <radio name="radio2" postLabel="Two" value="2"/>
4 <radio name="radio3" postLabel="Three" value="3"/>
5 </group>

Example: UI XML for the Radio component

Related Components
ButtonBox, Menu

Render
The Render component is used to display data using an XSLT file and requires that you bind data to the component. It offers a fast loading
XSLT transformation component and a flexible solutions for application design.

Usage
While having the full power of XSLT support the Render lacks much of the functionality that is available in the ListView component. However
since it is slimmer it loads much faster than the ListView.

The component also offers special handling of links, both external and internal (using xpath). This is possible by adding an xpath attribute to
internal links pointing to the desired data selection. For external links you use the a-element, just in HTML and you also provide a href-
attribute for the desired webpage and a with a target-attribute determining how the link should be opened (normally _blank for opening in
new window).

The Render component has limited support for triggerEvents. While you can create you own customized event names, they will not contain
the selection data like in the ListView component.

Details
Component Type: Structure

Component Properties: High Level Element, XSLT Driven Component, Data Driven Component

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%), auto The width of the component
height measure values integer (px), percent (%), auto The height of the component
href string URL Reference to XSLT file used for

rendering the content

Optional Attributes

Name Type Values Description
color string/numerical Color definition or "contrast" The text style of the top element

of the result will be set to this
value. If the value is "contrast"
the color will be black or white,
whichever contrasts the most to
the background.

entities boolean false, true Determines if < and > should not
be escaped

fade boolean false, true Defines if a fade effect should be
used between transformations

label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
scroll enumeration default, visible, scroll, false Determine scroll behavior
selectable boolean false, true Defines if all the text inside the

component should be selected
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements
None available.

XSLT
Note below that you can use the triggerEvent attribute standalone but in order to use the triggerComponent attribute which will allow you to
trigger a specific event for another component you need the triggerEvent attribute to define the name of that component.

The following attributes are used inside the XSLT.

Optional Attributes

Name Type Values Description
editableField boolean false, true Will make the element contents

selectable
triggerComponent string qid (#view#component) The component that the

triggerEvent will be triggered for

XIOS/3 Developer Manual - 2022-06-09 116/164

triggerEvent string Any string value A string value that can be caught
like any regular event

xpath string XPath Expression Used for internal links

Actions
hide, show

Events
DoubleClick, Select, TriggerEvent

Methods
setParam, setView

Syntax and Examples
Observe that this example needs to be bound to the data provided below in order to work and that it consists of an UI XML part, a XSLT file
and data.

1 <render name="renderExample" scroll="false" width="auto" height="auto" href="home://Documents/render.xsl"/>

Example: UI XML for the Render component

1 <?xml version="1.0"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
3
4 <xsl:template match="components">
5 <xsl:apply-templates select="//link"/>
6 </xsl:template>
7
8 <xsl:template match="link">
9 <div>

10 <xsl:choose>
11 <xsl:when test="@type = 'external'">
12 <xsl:value-of select="text()"/>
13 </xsl:when>
14 <xsl:when test="@type = 'internal'">
15 <xsl:value-of select="text()"/>
16 </xsl:when>
17 </xsl:choose>
18 </div>
19 </xsl:template>
20 </xsl:stylesheet>

Example: XSLT for the Render component

1 <components>
2 <component name="Accordion" tag="Component" group="UI XML">
3 <documentation>
4 <description>Accordion description. <link xpath="components[1]/component[@name='Button']">Link to Button</link></description>
5 </documentation>
6 </component>
7 <component name="Browser" tag="Component" group="UI XML">
8 <documentation>
9 <description>Browser description. <link xpath="components[1]/component[@name='Accordion']">Link to accordion</link></description>

10 </documentation>
11 </component>
12 <component name="Button" tag="Component" group="UI XML">
13 <documentation>
14 <description>Button description. <link type="external" href="http://xios3.com" target="_blank">XIOS3.com</link></description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for the Render component (link example)

Related Components
ListView

RichText
Defines a Rich Text Editor that makes it possible for end-users to style and format text. The component creates P- and SPAN-elements and
then applies CSS to them, this is however not visible to the end-user instead it is presented as formatted text. The editors looks like a
TextArea.

Usage
This component is used to format text, it is however in need of external controls to be also to do so, such as ButtonBoxes in MenuBar.

The Rich Text Component does accept that you bind data and modify it.

The wrap attribute is used to define the wrapping of the component. Wrapping can be set to "off", "soft" or "hard" where "hard" breaks words
in order to wrap the content. Where as the "soft" will only apply normal word wrap.

Styling of the text is made possible by using the modStyle method and listening to the events made by the editor, such as the
alignCenterSelect and alignCenterRelease and then applying or removing style depending on the event.

The DoubleClick event is only thrown when the editor is locked for editing.

Details
Component Type: System

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

XIOS/3 Developer Manual - 2022-06-09 117/164

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%) The width of the component
height measure values integer (px), percent (%) The height of the component

Optional Attributes

Name Type Values Description
autoSpellcheck boolean false , true Defines if spellcheck should be

started automatically
focus boolean true, false Defines if the component should

be focused when initiated
editable boolean true, false Decides if the component should

be editable
iframe boolean true, false Defines if the richtext should be

loaded in an iframe
label string Any string value The label text
look enumeration default, graphite Defines the visual appearence of

the component
lstyle string CSS Syntax Overrides the default label style

using CSS
scroll enumeration auto, scroll, false, true Controls the scroll behavior
style string CSS Syntax Overrides the component's

default style
tabindex numerical 1...[n] Defines the tab order
title string Any string value Tool-tip text
wrap enumeration hard, soft, off Word wrap mode for richtext

component

Child Elements
None available.

Actions
hide, show

Events
AlignCenterSelect, AlignCenterRelease, AlignLeftSelect, AlignLeftRelease, AlignRightSelect, AlignRightRelease, AlignJustifiedSelect,
AlignJustifiedRelease, BGColorSelect, BGColorRelease, Blur, BoldSelect, BoldRelease, BulletListRelease, BulletListSelect, Change,
ContextMenu, DecorationSelect, DecorationRelease, DoubleClick, Drop, FGColorSelect, FGColorRelease, Focus, FontFamilySelect,
FontFamilyRelease, FontSizeSelect, FontSizeRelease, ItalicSelect, ItalicRelease, Key, NumberListSelect, Release

Methods
clear, disableAutoSpellcheck, enableAutoSpellcheck, executeCommand, getLineBottomMargin, getLineTopMargin, getSelectedText, getValue,
insertHyperlink, insertImage, insertText, modStyle, print, removeList, setEditableMode, setLineMargin, setLineIndent, wordWrap

Syntax and Examples
This example works on the fly and does not need to be bound to data to work. However note that this component is controlled by methods
(and events), so for full functionality they must be utilized.

1 <richtext name="richTextEditor" height="auto" width="auto" wrap="soft"/>

Example: UI XML for the RichText component

Related Components
TextArea

Shell
Defines a text-based command line interface. The Shell is used for text based communication with the XIOS/3 system.

Usage
The Shell component is an application component that can be integrated into any application. The component can execute the same
commands as the Shell application on your desktop.

Details
Component Type: System

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: banner, look, macro, group, command

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component

XIOS/3 Developer Manual - 2022-06-09 118/164

height measure values integer (px), percent (%), auto,
fill

The height of the component

width measure values integer (px), percent (%), auto,
fill

The width of the component

Optional Attributes

Name Type Values Description
label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
scroll enumeration auto, scroll, visible, false Controls the scroll behavior
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text

Child Elements

banner
If present the text of the banner element will be printed when the shell is opened.

Name Type Values Description
xios boolean true, false If true a generated banner is

printed out, using the title,
version, and copyright of the
system document.

look
Defines a look for the shell. A look can be selected from the look command, from the shell look attribute, or from the theme system. The
available looks can be listed using the look command with no argument.

Name Type Values Description
bgColor color #rrbbgg The color of the shell background.
confirmation color #rrbbgg The color used to display

confirmation messages.
dirColor color #rrbbgg The color used to display

directories/folders.
divider color #rrbbgg The color of dividers.
error color #rrbbgg The color used for error

messaged.
fileColor color #rrbbgg The color used to display files.
font string LucidaConsole, Fixedsys,

CourierNew, AndaleMono,
Consolas, Terminal, Courier,
Monaco, NimbusMonoL,
DejaVuSansMono,
BitstreamVeraSansMono,
Courier10Pitch, OCRAExtended,
Droid

The font to use for the shell text.

fontColor color #rrbbgg The color of the shell default font.
fontSize enumeration tiny, smallest, smaller, medium,

larger, largest, huge
The size of the shell text.

formAnswer color #rrbbgg The color used for the answer or
content of a form.

formText color #rrbbgg The color used for the question or
title for a form.

info color #rrbbgg The color used for information
text.

name string unique name The name of the shell look.
progress color #rrbbgg The color used for wait messages.

macro
Defines a command as a macro, i.e. a different command line. The content of the element is the command line that the macro efines. The
dollar sign acts as a variable for a macro argument, e.g. a macro named "delete" could have the definition "rm $" to remove the file given
after the delete command.

Name Type Values Description
description string Any string value A short description of the macro,

displayed from the macro
command.

name string uniqe name The name of the macro.

group
Defines a command group and places all commands defined by the child command elements into that group. The group is used in the
grouping in the help command.

Name Type Values Description
name string uniqe name The name of the group.

command
Defines a command. The content is the description of the command. A command can either be defined internally in the Shell component, or it
can be defined in process code where every non-internal command will trigger a Command_name event from the shell component.

Name Type Values Description
internal enumeration any of the internal commands Select a command from the

internal list of defined
commands.

name string uniqe name The name of the command.

XIOS/3 Developer Manual - 2022-06-09 119/164

Actions
hide, show

Events
Every non-internal command will trigger a "Command_name" event, where the "name" is the defined name of the command. The element in
the trigger will be a command node with a "name" and "path" attribute with the name of the command and the current path of the shell. The
parsed options will be in the "option" elements and the left over arguments in "argument" elements. The unparsed command line is in a "raw"
element. Finally, if this is part of chained commands, the previous result is in a "result" element.

If there are no registered commands for a specific input, the "Command" event is triggered.

ChangedBackground, ChangedFont, ChangedLook, Command, ContextMenu, Close, Drop, Fullscreen, Menu, Tab

Methods
getBackground, getFont, getLook, setLook

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <shell name="myShell" width="100" height="100" scroll="auto"/>

Example: UI XML for the Shell component

Related Components
None available.

Slider
Defines a component that will allow the user to choose from a limited about of values by dragging a slider across the a bar.

Usage
All values are predefined and contained within a plate. When the user drags the slider it will change values while also outputting the value
above the slider.

The component has an optional label attribute which will output a text label above the component when set.

Details
Component Type: Navigation

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: plate

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px) The width of the component
height measure values integer (px) The height of the component

Optional Attributes

Name Type Values Description
label string Any string value The label text
look enumeration default, graphite Defines the visual appearence of

the slider and the plate
max numerical 1 or higher The maximal possible value. Must

be higher than the min attribute
min numerical 0 or higher Tha minimal possible value. Must

be lower than the max attribute.
lstyle string CSS Syntax Overrides the default label style

using CSS
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
type enumeration default, media, toolbar Visual mode of the slider

Child Elements
None available.

Actions
enable, disable, hide, show

Events
Select

Methods
getValue, setValue

XIOS/3 Developer Manual - 2022-06-09 120/164

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <slider name="sliderExample" label="Arc Size" width="120" look="graphite" type="toolbar">
2 <plate name="arcSizePlate">
3 <item value="0.0" selected="true">0%</item>
4 <item value="0.05">10%</item>
5 <item value="0.10">20%</item>
6 <item value="0.15">30%</item>
7 <item value="0.20">40%</item>
8 <item value="0.25">50%</item>
9 <item value="0.30">60%</item>

10 <item value="0.35">70%</item>
11 <item value="0.40">80%</item>
12 <item value="0.45">90%</item>
13 <item value="0.50">100%</item>
14 </plate>
15 </slider>

Example: UI XML for the Slider component

Related Components
ComboBox

TabStrip
The TabStrip Component handles and shows tabs.

Usage
Each tab is actually defined by a Panel component which is located inside the TabStip Component element. The component uses mutex
behavior

TabStrips offer limited options for styling and layout, however there are minor customizations that you can use. First by using the position
attribute you can position the tabstip to either the top or bottom. The tabs attribute can be use to hide the tabs to only display the preselected
panel.

Observe that some attribute used for controlling the tabStrip are set directly on Panels; these include the selected and icon attributes.

Using the show and hide actions on panels that make up the tabstrip will also emulate that behavior in the tabstrip by changing that is
selected.

Using setSelection you can set define the selection that will be used in the tabstrip.

Details
Component Type: Navigation

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%) The width of the component
height measure values integer (px), percent (%) The height of the component

Optional Attributes

Name Type Values Description
font string Any string value Defines the font to use on the

text
position enumeration top, bottom Specifies the position of the

tabstrip
label string Any string value The label text
look enumeration default, classic, graphite Defines the visual appearence of

the tabstrip
lstyle string CSS Syntax Overrides the default label style

using CSS
style string CSS Syntax Overrides the component's

default style
tabindex numerical 1...[n] Defines the tab order
tabs boolean true, false Sets the visibility of the tabstrip
title string Any string value Tool-tip text

Child Elements
None available.

Actions
hide, show

Events
ContextMenu, Release, Select

Events on contained panels
Select

XIOS/3 Developer Manual - 2022-06-09 121/164

Methods
flashTab, selectTab

Syntax and Examples
This example works on the fly and does not need to be bound to data to work.

1 <tabstrip name="tabstrip1" width="auto" height="auto" position="top" tabs="true">
2 <panel name="panel1" type="row" selected="true">
3 <label name="lab1" default="This a label"/>
4 </panel>
5 <panel name="panel2" type="row" icon="xios/icons/applications/16x16/help2.png">
6 <label name="lab2" default="This a another label"/>
7 </panel>
8 </tabstrip>

Example: UI XML for the TabStrip component

Related Components
Panel

TextArea
Defines a Text Area used for displaying and editing text that needs several lines.

Usage
It is a very basic component used to edit large amounts of text, unlike the Input which is used for single line editing.

The component is controlled by attributes, and can be set to two difference modes, using the mode attribute. The default mode will escape
any text written, while the xml mode will not.

Using the wrap attribute you can determine how text inside the component should be wrapped. The focus attribute allows for the component
to be focused, meaning that the marker will be set in the component. If several components has the this attribute set to true it is applied to
the latest rendered component. The enabled attribute makes it possible to disable the component, so that it appears to be greyed out and
unusable.

Details
Component Type: System

Component Properties: High Level Element

Parent Elements: Container, Panel

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
width measure values integer (px), percent (%) The width of the component
height measure values integer (px), percent (%) The height of the component

Optional Attributes

Name Type Values Description
default string Any string value The default text value displayed

in the component
enabled boolean true, false Set to false to disable the

component
focus boolean true, false If the component should be

focused
hide boolean false, true Decides of the component should

be hidden when initially loaded
hold boolean true, false If component should stop

listening to data updates
label string Any string value The label text
length numerical [1-n] Defines the maximum character

length of the content
look enumeration default, white The visual look of the component
lstyle string CSS Syntax Overrides the default label style

using CSS
mode enumeration xml, default Process text structured as XML or

just as plain text
style string CSS Syntax Overrides the component's

default style
tabindex numerical 1...[n] Defines the tab order
title string Any string value Tool-tip text
wrap enumeration soft, hard, off Word wrap mode for textarea

Child Elements
None available.

Actions
enable, disable, hide, show

Events
XIOS/3 Developer Manual - 2022-06-09 122/164

Changed, ContextMenu, Key, Release, Return, Saved, Select

Methods
activate, clear, execCommand, getSelectionLength, getSelectionValue, getValue, releaseEnter, setFont, takeEnter, wordWrap

Syntax and Examples
These examples work on the fly and do not need to be bound to data to work.

1 <textarea name="Textarea1" height="100" width="100" wrap="soft"/>
2
3 <textarea name="Textarea2" height="100" width="100" wrap="hard" enabled="false"/>
4
5 <textarea name="Textarea3" height="100" width="100" wrap="off" focus="true"/>
6

Example: UI XML for the TextArea component

Related Components
Input

ToolBar
The toolbar component is a container for ButtonBox components that can be aligned towards any border of the application window or be
floating.

Usage
If the toolbar is draggable, using the draggable attribute, then a docked toolbar can be made floating by the end-user and vice versa. The
Group component can be used to group buttonbox components together and creates separators between different groups in the toolbar that
share behavior.

Grouping several ButtonBox components is done by using the group component and its mode attribute. This will make them share behavior.

The opacity attribute controls the visibility of the component and is set to 100 be default, which means that it has 0 transparency. Different
visual modes can also be chosen using the type attribute. The default value will display a greyish toolbar white dark will display a darker
version of that toolbar. The value zoom will increase the size of the hovered option, simulating zoom behavior, while system will make the
toolbar look like the system tray in XIOS/3.

Positioning is also possible; mainly by using the position attribute. It allows you to position your toolbar in four different directions, and also to
be floating. When the value floating is used, then the xpos (left) and ypos (top) attribute can be used. These are used to set the absolute
position of the toolbar relative to the application window. Observe that the value float for the position attribute cannot be used when placing
the toolbar inside a panel.

Details
Component Type: Placeholder

Component Properties: High Level Element, Container Component

Parent Elements: Panel, View

Child Elements: None available.

Can Use Rules: No

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px) The height of the component
position enumeration top, bottom, left, right, float Set the position of the toolbar
width measure values integer (px) The width of the component

Optional Attributes

Name Type Values Description
draggable boolean true, false If the toolbar should be draggable
hide boolean false, true Defines if the component should

be hidden upon start up
icon boolean false, true Defined if space should be

reserved for an icon but not to
load an icon at startup

label string Any string value The label text
look enumeration default, liquid Overrides the default skin styling

for the toolbar
lstyle string CSS Syntax Overrides the default label style

using CSS
opacity numerical 100, [0...100] Specifies the percentage of the

visibility
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
type enumeration default, system, zoom, dark Defines the visual appearance of

the toolbar
xpos numerical [1...n] Defines the left position for a

floating toolbar
ypos numerical [1...n] Defines the top position for a

floating toolbar

Child Elements
None available.

XIOS/3 Developer Manual - 2022-06-09 123/164

Actions
hide, show

Events
ContextMenu

Methods
None available.

Syntax and Examples
These examples work on the fly and does not need to be bound to data to work.

1 <toolbar name="toolbarExample" position="top" draggable="true">
2 <group name="fileGrp">
3 <buttonbox name="New" icon="xios/icons/applications/24x24/document_new.png"/>
4 <buttonbox name="Open" icon="xios/icons/applications/24x24/folder.png"/>
5 <buttonbox name="Save" icon="xios/icons/applications/24x24/disk_blue.png"/>
6 </group>
7 <group name="editGrp">
8 <buttonbox name="Copy" icon="xios/icons/applications/24x24/copy.png"/>
9 <buttonbox name="Cut" icon="xios/icons/applications/24x24/cut.png"/>

10 <buttonbox name="Paste" icon="xios/icons/applications/24x24/paste.png"/>
11 </group>
12 </toolbar>

Example: UI XML for the ToolBar component (normal mode)

1 <toolbar name="toolbarExample" position="top" draggable="false" type="dark">
2 <buttonbox name="Copy" icon="xios/icons/applications/24x24/copy.png" text="Copy" title="Copy"/>
3 <buttonbox name="Cut" icon="xios/icons/applications/24x24/cut.png" text="Cut" title="Cut" mode="toggle" />
4 <buttonbox name="Paste" icon="xios/icons/applications/24x24/paste.png" text="Paste" title="Paste"/>
5 </toolbar>
6

Example: UI XML for the ToolBar component (dark mode)

Related Components
ButtonBox

Tree
Defines a tree view. It is used to display data in a classic tree structure.

Usage
The tree component uses rules to display branches (nodes). The rule elements use the match attribute to select the relative data bound to the
component. By using the display attribute you want output either data or text. If you are using data in the display attribute, observe that the
attribute is using relative XPath in relation to the rule.

Only one rule condition can be met per data item. In the example below we have bound the entire data document (root), the reason if that the
tree must have a root node. Looking at the UI XML we use the first rule to match the XML data root node, components. We choose to display
the string Component List instead of displaying data. We also set the icon for the matched element.

Our second rule condition proceeds to match the component node, which there are three of in the data XML. Again we set a icon, but here we
use the display attribute on the rule to display the name attribute on the component element inside the data XML. Our third rule is similar to
the first rule.

When using Expressions on the component it will return the data of the selected tree item and its children.

Styling of the component is possible, using in the first the border and bgcolor attribute to the border width and the background color. The
focusnew attribute will set focus on newly created nodes inside the tree. This is used when the data bound to the tree is updated.

Using setSelection you can set define the selection that will be used in the tree.

Details
Component Type: Structure

Component Properties: Data Driven Component

Parent Elements: Container, Panel

Child Elements: None available

Can Use Rules: Yes

Attributes

Required Attributes

Name Type Values Description
name string unique name The name of the component
height measure values integer (px), percent (%) The height of the component
icon string URL Path to the icon
width measure values integer (px), percent (%) The width of the component

Optional Attributes

Name Type Values Description
border numerical [0...n] Size of border in pixels
bgcolor color [#rrggbb] Decides the color of background
docmatch string Expression Match a node-set from an

external document

XIOS/3 Developer Manual - 2022-06-09 124/164

focusnew boolean true, false Decides if the tree should focus
on newly created nodes in the
tree

label string Any string value The label text
lstyle string CSS Syntax Overrides the default label style

using CSS
multiple boolean true, false Allow multiple selections
sort enumeration ascending, descending Defines in which order the sorting

is listed
sort-key Expression XPath Defines by which XPath the tree

nodes will be sorted
style string CSS Syntax Overrides the component's

default style
title string Any string value Tool-tip text
wait string Any string value Text to display while loading data

to component

Child Elements

rule
The rule element is used to match specific data elements and display them as as a tree structure.

Required attributes

Name Type Values Description
display string XPath Expression XPath expression relative to the

match attribute
icon string URL Icon to render right of the display

text
match string XPath Expression XPath expression relative to the

data bound

Optional attributes

Name Type Values Description
draggable boolean true, false If rendered branches of tree

should be draggable
icon2 string URL Icon to display if the tree branch

is expanded
open boolean true, false Defines if tree branch should be

expanded

Actions
activate, hide, show

Events
ContextMenu, Delete, DoubleClick, Drop, Edit, Select

Methods
edit, getNodePath, getCurrentLabel, getDataLocation, getSrcDataLocation, navigateUp, nodeExpanded, setSelectionEx, setSelectionRoot,
toggleNode

Syntax and Examples
Observe that this example needs to be bound to the data provided below in order to work.

1 <panel name="panelContainer" type="row" padding="4" look="white">
2 <tree name="treeExample" border="0" bgcolor="#fff" focusnew="false" width="300" height="auto">
3 <rule match="components" icon="icon://star" display="'Components List'" open="true"/>
4 <rule match="component" icon="icon://piece" display="@name" open="false"/>
5 <rule docmatch="xios/config/types.xml#//foldertypes/type" icon="icon://about" display="@name" open="false"/>
6 </tree>
7 </panel>

Example: UI XML for the Tree component

1 <components>
2 <component name="Accordion" tag="Component" group="UI XML">
3 <documentation>
4 <description>Accordion description.</description>
5 </documentation>
6 </component>
7 <component name="Browser" tag="Component" group="UI XML">
8 <documentation>
9 <description>Browser description.</description>

10 </documentation>
11 </component>
12 <component name="Button" tag="Component" group="UI XML">
13 <documentation>
14 <description>Button description.</description>
15 </documentation>
16 </component>
17 </components>

Example: Data XML for the Tree component

Related Components
None available.

Functions
XIOS/3 Developer Manual - 2022-06-09 125/164

There are several functions available for developers that are very useful.

The functions allow you to manipulate strings, extract information from document paths och also to work with XML documents.

apply-locale
A function that applys language localization to any XML document.

Syntax

1 XML node-set = apply-locale('[XML Document]', '[XPath]')

Example
In the example below the alias $localizedDoc will contain an XML documement where the values have been localized according to the
language files.

1 <alias name="localizedDoc" value="apply-locale(data/text.xml)"/>

In the example below only a specific node will be localized, not the full document.

1 <alias name="localizedDoc" value="apply-locale('data/text.xml', '/node[1]/node[3]')"/>

Related Topics
get-label

capitalize
A function that returns the passed string as capitalized.

Syntax

1 string = capitalize([string])

Example
In the example below the alias $newString will contain the string "Internet rocks".

1 <alias name="newString" value="capitalize(internet rocks)"/>

Related Topics
downcase, upcase

concat
A function that returns a concatenation of its parameters.

Syntax

1 string = concat([string]...)

Example

1 <alias name="email" value="concat('lars','@','domain.com')" model="value"/>

count
A function that returns the number of elements matching your Xpath.

Syntax

1 integer = count([xpath])

Example

1 <alias name="intItemsInFile" value="count($dataDoc#//item)" model="value"/>

count-selection
A function that returns the length of a selection.

XIOS/3 Developer Manual - 2022-06-09 126/164

Syntax

1 integer = count-selection([xpath])

Example

1 <alias name="itemLength" value="count-selection($dataDoc#//item)" model="value"/>

changes
A function that returns the number of changes that have been made to a document since it was loaded or saved.

Syntax

1 integer = changes([string])

Example
If no changes have been made to the document the alias $changesMade will contain the string '0'.

1 <alias name="myDataDoc" value="home://Documents/file.xml"/>
2 <alias name="changesMade" value="changes($myDataDoc)"/>

channelname
A function that returns the name of the communication channel which provides the document.

Syntax

1 string = channelname([string])

Example
In the example below the alias $mainChannel will contain the string "xios".

1 <alias name="newSting" value="channelname(home://Documents/Picture/home.png)"/>

Related Topics
downcase, upcase

contains
A function that checks if a string contains a specific string.

Syntax

1 boolean = contains('needle','haystack')

Example

1 <alias name="containsFalse" value="contains('false','Singing in falsetto.')"/>

Related Topics
None available.

document
A function that returns the name of a document without file extensions (eg. .xml) or folderpath.

Syntax

1 string = document([string])

Example
In the example below the alias $documentname will contain the string 'Italy Vacation'.

1 <alias name="documentname" value="document(home://Documents/Italy Vacation.xml)"/>

XIOS/3 Developer Manual - 2022-06-09 127/164

Related Topics
None available.

downcase
A function that returns the passed string in lowercase.

Syntax

1 string = downcase([string])

Example
In the example below the alias $newString will contain the string 'hello world'.

1 <alias name="newSting" value="downcase(HELLO WORLD)"/>

Related Topics
capitalize, upcase

escape-string
A function that escapes strings for inclusion in expressions. The characters backslash, single quote, and double quote are prefixed with a
backslash.

Syntax

1 string = escape-string([string])

Example
In the example below the alias $newString will contain the string "Internet rocks".

1 <alias name="newString" value="read('store://Documents/escape-string({$untrustedName})')"/>

Related Topics
None available.

filename
A function that returns the name of the file from the URL given to it. This includes the file suffix, if any.

Syntax

1 string = filename([string])

Example
In the example below the alias $filename will contain the string "home.png".

1 <alias name="filename" value="filename(home://Documents/Photots/home.png)"/>

Related Topics
foldername, folderpath

filetype
A function that returns the filetype XML of the passed document.

Syntax

1 XML = filetype([string])

Example

1 <alias name="filetypedata" value="filetype(home://Documents/Photots/home.png)"/>

Related Topics
None available.

XIOS/3 Developer Manual - 2022-06-09 128/164

folderexist
A function that returns either true or false depending if a folder exists when passed a folder path.

Syntax

1 boolean = folderexist([string])

Example
In the example below the alias $myFolder will contain false as we set a path that does not exist. It can be used in operation decision to check
if a folder exists.

1 <alias name="myFolder" value="folderexist(home://fakeFolder/)"/>

Related Topics
None available.

folderid
A function that returns the id of a folder when passed a folder path.

Syntax

1 integer = folderid([string])

Example
In the example below the alias $folderId will contain a string of the id number of the folder as found in folders.xml. This id is unique for the
folder in the entire filesystem.

1 <alias name="folderId" value="folderid(home://Documents/)"/>

Related Topics
None available.

foldername
A function that returns the name of the folder in which the document is located. Ex "home://Documents/Pictures/image.png" as a parameter
will return "Pictures".

Syntax

1 string = foldername('[string]|[id]', '[int]')

The first parameter is a folder path or folder id and is required. The second parameter which is optional defines the folder depth to return
from the root. If no value is provided the function will return the name of the folder which contains the document. If the value '0' is provided it
will return nothing, although if '2' is provided it might return 'Pictures' (if the file was located at home://Documents/Pictures/)

Example
In the example below the alias $folderLocation will contain the string "Pictures".

1 <alias name="folderLocation" value="foldername('home://Documents/Pictures/home.png')"/>

In the example below the alias $folderListing will contain the string 'Pictures'.

1 <alias name="folderListing" value="foldername('home://Documents/Pictures/home.png', '2')"/>

Related Topics
folderpath

folderpath
A function that returns the full folder path of the document. Ex "home://Documents/Pictures/image.png" as a parameter will return
"home://Documents/Pictures/".

Syntax

1 string = folderpath('[document]', '[int]')

The first parameter is a document URL and is required. The second parameter which is optional defines the folder depth to return from the
root. If no value is provided the function will return the path of the folder which contains the document. If the value '0' is provided it will return
the channel name (ex 'home://'), and if '2' is provided it will return 'home://Documents/Pictures/'

The second parameter also supports negative index (-1 and so on) which will allow the function to return the parent folder, and -2 will return
the parent-parentfolder.

XIOS/3 Developer Manual - 2022-06-09 129/164

Example
In the example below the alias $DocFolderPath will contain the string 'home://Documents/Pictures/'.

1 <alias name="DocFolderPath" value="folderpath('home://Documents/Pictures/home.png')"/>

In the example below the alias $ParentFolder will contain the string 'home://Documents/'.

1 <alias name="ParentFolder" value="folderpath('home://Documents/Pictures/home.png','1')"/>

Related Topics
foldername

format-bytes
A function that convertes bytes into megabytes (MB), gigabytes (GB) etc.

Input Output
< 1 KB Value in bytes
> 1KB and < 1 MB Value in kilobytes
> 1MB and < 1 GB Value in megabytes
> 1GB and < 1 TB Value in gigabytes
> 1TB Value in terrabytes

Syntax

1 string = format-bytes(integer)

Examples
In the example below the alias $size will contain a more readable size of the passed bytesize.

1 <<alias name="byteSize" value="{$atomEntry#atom:link/@length}"/>
2 <alias name="size" value="format-bytes({$byteSize})"/>

Related Topics
None available.

localizedate
A function that returns the passed system date string as localized to the users settings.

Syntax

1 string = localizedate([string])

Example
In the example below the alias $localDate will contain the string "2021-04-09 15:10".

1 <alias name="localDate" value="localizedate(2021-04-09T13:10:54Z)"/>

Related Topics
formatdate,

formatdate
A function that returns a specified date formatted according to a specificed format. The following formatting symbols are available that can be
used together with other characters to create formatting strings. To escape any of these sequences, preceed it with a backslash (\)
character.
hh 0-prefixed 12-hour hours, i.e. "07"
h 12 hour hours, i.e. "7"
HH 0-prefixed 24-hour hours, i.e. "19"
H 24-hour hours, i.e. "19"
mm 0-prefixed minutes, i.e. "05"
m Minutes, i.e. "5"
ss 0-prefixed seconds, i.e. "00"
s Seconds, i.e. "0"
yyyy Full year, i.e. "2020"
yy Last two digits of year, i.e. "20"
dddd Weekday as text, i.e. "Wednesday"
ddd Three character abbreviation of weekday, i.e. "Wed"
dd 0-prefixed day of month, i.e. "09"
d Day of month, i.e. "9"
MMMM Month as text, i.e. "September"
MMM Three character abbreviation of month, i.e. "Sep"
MM 0-prefixed month number, i.e. "08"

XIOS/3 Developer Manual - 2022-06-09 130/164

M Month number, i.e. "8"
tt "AM" or "PM"
t "A" or "P", signifying AM or PM
S "st", "nd", "rd" or "th" to construct month ordinal like "23rd"

There are a few formatting strings available when used as the only character in an argument.
d M/d/yyyy
D dddd, MMMM dd, yyyy
F dddd, MMMM dd, yyyy h:mm:ss tt
m MMMM dd
r ddd, dd MMM yyyy HH:mm:ss GMT
s yyyy-MM-ddTHH:mm:ss
t h:mm tt
T h:mm:ss tt
u yyyy-MM-dd HH:mm:ssZ
y MMMM, yyyy

Syntax

1 string = formatdate('[string]', '[string]')
2 string = formatdate('[string]')

Example
In the example below the alias $tomorrow will format tomorrow's date into YY-M-d format.

1 <alias name="tomorrow" value="{formatdate('tomorrow', 'yy-M-d')}"/>

In the example below the alias $timeVariable will contain the date of three days from now.

1 <alias name="timeVariable" value="{formatdate('t + 3 d', 'yy-M-d')}"/>

In the example below the alias $timeVariable will contain the date of next Monday.

1 <alias name="timeVariable" value="{formatdate('next Monday', 'yyyy-M-d')}"/>

Some additional examples:

1 <alias name="timeVariable" value="{formatdate('July 8th, 2018, 10:30 PM')}"/>

1 <alias name="timeVariable" value="{formatdate(14:55:22)}"/>

1 <alias name="timeVariable" value="{formatdate('december 24', 'dddd')}"/>

1 <alias name="timeVariable" value="{formatdate('2018-12-27', 'yy/M/d')}"/>

1 <alias name="timeVariable" value="{formatdate('last friday', 'yyyy-M-d')}"/>

Related Topics
localizedate, adddate, parsedate

get-label
A function that returns the locale (localized language version) value of the passed label.

This function will return the value of the language that the user has defined in his #Settings or in en_US which is th default version.

This function requires the declaration of the l namespace.

Syntax

1 string = get-label([string])

Example

1 <alias name="okText" value="{get-label('open')}"/>

Related Topics
apply-locale

XIOS/3 Developer Manual - 2022-06-09 131/164

index-of
A function that returns the index of a specific string.

Syntax

1 boolean = index-of('needle','haystack')

Example

1 <alias name="falseInString" value="index-of('false','Singing in falsetto.')"/>

Related Topics
None available.

is-alias
A function that returns checks if an alias has been defined and returns either true if set or false it the alias has not been set.

Note: the alias should be written without the leading $.

Syntax

1 boolean = is-alias([string])

Example

1 <operation name="decision">
2 <when test="is-alias(username)" step="continueWithStartUp"/>
3 <otherwise step="getUsername"/>
4 </operation>

Related Topics
None available.

is-open
A function that returns true or false depending if a view is open or not.

Syntax
The parameter passed is the name of the view with the instance number.

1 integer = is-open(name:instance)

Example
In the example below the alias $open will contain true if the Document Explorer application is open.

1 <alias name="open" value="is-open(DE:1)"/>

Related Topics
is-running

is-running
A function that returns the number of instances running of an application.

Syntax
The parameter passed is the name of the application.

1 integer = is-running(string)

Example
In the example below the alias $instances will contain the number of running Document Explorer instances.

1 <alias name="instances" value="is-running(Document Explorer)"/>

Related Topics
is-open

XIOS/3 Developer Manual - 2022-06-09 132/164

local-name
A function that returns the name of the attribute or element without the namespace. For example if the element "exp:item" would return only
"item".

Syntax

1 string = local-name(string)

Example

1 <operation name="decision">
2 <when test="local-name($documentEntry) = 'title'" step="100"/>
3 <otherwise step="200"/>
4 </operation>

match
A function that returns the string of the first match. It uses JavaScript Regular Expressions syntax.

Syntax

1 string = match('[string]','[regexp]')

Example
In the example below the alias $emailDomain will contain the string '@domain.com'

1 <alias name="emailDomain" value="match('goran@domain.com', '@[a-zA-Z0-9.-]+\.[a-zA-Z]')"/>

Related Topics
replace

parsedate
A function that parses a string that represents a date and returns it in the requested format.

Syntax

1 string = parsedate('[string]','[string]')

The first parameter is the is input string and should be a date formatted string.

The second paramter is the format string that defined in which format the output shall be provided.

Only the first parameter is required, the second is optional and the function will return the date in the yyyy-MM-ddTHH:mm:ss format unless
otherwise stated.

Example
The example below will return todays date in this format: yyyy-MM-ddTHH:mm:ss

1 <alias name="newDate" value="parsedate(now)"/>

The example below will return the date in this format: 2007-07-08T22:30:00

1 <alias name="newDate" value="parsedate('July 8th, 2007, 10:30 PM')"/>

Some additional examples:

1 <alias name="newDate" value="parsedate('10/15/2019', 'M/d/yyyy')"/>

1 <alias name="newDate" value="parsedate('15-Oct-2019', 'd-MMM-yyyy')"/>

1 <alias name="newDate" value="parsedate('2019.10.15', 'yyyy.MM.dd')"/>

Related Topics
adddate, formatdate

position
A function that returns the position of the element requested by the Xpath parameter.

Syntax
XIOS/3 Developer Manual - 2022-06-09 133/164

1 integer = position([xpath])

Example
In the example below the alias $randomNumber will contain a string with a number between 1 and 100.

1 <operation name="decision">
2 <when test="position(#view1#listview10) = 5" step="100"/>
3 <otherwise step="200"/>
4 </operation>

random
A function that returns a random number between x and y.

Syntax

1 integer = random('[int]', '[int]')

Example
In the example below the alias $randomNumber will contain a string with a number between 1 and 100.

1 <alias name="randomNumber" value="random('1','100')"/>

In the example below we alert the random number in a context.

1 <operation name="debug" value="I have {random('1','100')} cars!"/>

Related Topics
None available.

read
A function that returns a read-only version of the passed document.

Syntax

1 XML = read('[string]')

Example

1 <alias name="docReadOnly" value="read('home://Documents/important.xml')"/>

Related Topics
None available.

replace
A function that returns a string where a substring has been replaced. It uses JavaScript Regular Expressions syntax with the global ("g") flag.

Syntax

1 string = replace('[string]', '[string|RegExp]', '[string]')

Example
In the example below the alias $replacedString will contain the string '12'.

1 <alias name="replacedString" value="replace('version 12.', '[^\d]','')"/>

Related Topics
match

selected-text
A function that returns the user selected text in the currently active view.

Syntax

1 string = selected-text()

XIOS/3 Developer Manual - 2022-06-09 134/164

Example

1 <alias name="selectedText" value="selected-text()"/>

selection
A function that returns the xpath selection of the event object or alias.

Syntax

1 string = selection('[object|alias]')

Example
In the example below the alias $currentSelection will contain the selection (if one exists) in the listview1 component located in the view1 UI
file.

1 <alias name="currentSelection" value="selection(#view1#listview1)"/>

substring
A function that returns a substring as requested by the parameters passed.

Syntax
The function has several parameters. The first being the original string, each following parameter should contain a substring instruction
allowing the user to manipulate the original string.

Available instuctions are:

Name Type Values Description
startPos integer [0...n] Defines the staring position of the

substring. Used with endPos
instruction.

endPos integer [0...n] Defines the end position of the
substring. Used with and must
the higher than startPos.

startString string Any string value Defines the starting string of the
subtring. Used with endString
instruction.

endString string Any string value Defines the ending string of the
substring. Used with the
startString instruction.

startOffset integer [0...n] Defines the offset added to the
startPos instruction.

endOffset integer [0...n] Defines the offset added to the
endPos instruction.

startType enumeration firstIndex, lastIndex Defines if the last occurance of
the startString string should be
used or the first.

endType enumeration firstIndex, lastIndex Defines if the last occurance of
the endString string should be
used or the first.

substringLength integer [1...n] Defines the length of the
substring.

1 string = substring('[string]', '[string]', '[string]?')

Example
In the example below we request a substring with the start position of 2 (counting starts with 0) and the end position of 6.

The alias $alphabetExtraction should contain the string CDEFG.

1 <alias name="alphabetExtraction" value="substring('ABCDEFGHIJKL', 'startPos:2', 'endPos:6')"/>

trim
A function that returns the passed string but with the leading and the trailing whitespace removed.

Syntax

1 string = trim('[string]')

In the example below the alias $newString will contain the string 'hello world'

Example

1 <alias name="newString" value="trim(' hello world ')"/>

XIOS/3 Developer Manual - 2022-06-09 135/164

trim
A function that returns a string where all occurances of the given substring has been replaced with the second substring. This is identical to
the XSLT translate function.

Syntax

1 string = translate('[string]', '[string]', '[string]')

In the example below the alias $replacedString will contain the string 'a_b_c'.

Example

1 <alias name="replacedString" value="trim('a b c',' ','_')"/>

upcase
A function that returns the passed string in uppercase.

Syntax

1 string = upcase('[string]')

Example
In the example below the alias $newString will contain the string 'HELLO WORLD'.

1 <alias name="newSting" value="upcase('hello world')"/>

Related Topics
capitalize, downcase

xml
A function that returns a string that contains XML-like contents into XML.

The function will lose its reference to the dataDoc and Xpath selection in the data document passed in as a parameter. This can be put into
reference that enclosing an expression with curley brackets "{}" will convert it to a string without any XML.

Syntax

1 xml = xml(string|expression)

Example
In the example below we make sure that the component will return an XML node, and not a text string.

1 <alias name="my_value" value="xml(#view1#component1)"/>

Related Topics
None available.

Process Operations
This section contains all available operations in XIOS/3.

All operation pages start with a general description of the operation. This is followed by a usage section where we cover how this operation is
used and what purpose the attributes and child elements have.

A list of all attributes related to the operation element and then a list of all child elements and their attributes. This is then followed by a
section called "Syntax and Examples", were the basic syntax of the operation is followed by examples.

At the bottom of each page is a list of related operations.

action
This operation enables the developer to perform a number of actions on components. All available actions are listed in the "Using
Components" section with examples and a list of components that the action can be applied to.

This operation is asynchronous.

Usage
The enable-action enables text areas, input fields and button where as the disable-action disables them. The hide- and show-actions makes
components invisible or visible. The select-action emulated the select-event on menus. The release-action emulates the release-event on
menus. The unbind-action unbinds any data bound to a component. The clear-action empties fields or text areas from text.

Attributes

XIOS/3 Developer Manual - 2022-06-09 136/164

Required Attributes

Name Type Values Description
name string action Defines the action operation
value expression expression In what view the components are

located

Child Elements

component (Required)

Name Type Values Description
name string enumeration The name of the component on

which the action will be
performed

action enumeration See available actions The type of action to be
performed from the list of

Syntax and Examples
Syntax

1 <operation name="action" value="expression">
2 <component name="string" action="enumeration"/>
3 </operation>

Example

1 <operation name="action" value="#view1">
2 <component name="abGrid" action="unbind"/>
3 <component name="inputName" action="clear"/>
4 </operation>

Example: Process code for the action operation

Related operations
callMethod

bind
This operation enables users to bind data to components thus utilizing the strength with XIOS/3.

Usage
The bind operation is a central operation that is used frequently. The data is either a URL to an XML document or an expression. We
recommend that you read the section about Using Expressions to learn more about how to use expressions. The component gains access to
that document and will only utilize the bound section of data.

The bound components render the data in its own way. When components are bound to each other they keep track of changes made in either
of the components. When the data is changed in one component that same change will happen in the other component.

Binding a component that to another which is not bound to any data will result in that a string of the selected value in the component can be
retrieved. This is achieved by evaluating an expression. The reason why we must evaluate the component is because all component are
bound to temporary XML data which until we bind data to it.

The model attribute on the component element, an optional attribute, is used to define what data handling to use. Setting it to "none" will
concatenate the xpath base path and the select attribute. If it is set to "data" it will instead bind to the root of XML data in the event object,
without a base path. A select attribute can be appended to select data relative to the root. "clone" will copy the dataDoc, xpath and selection
of the event object (e.g. alias). When it is set to "base" the base path will be copied and the select attribute can be used to select data relative
to the base path.

The type attribute, which is also optional, will when set to focus bind the data once and then release the connection. The default value of the
attribute allows for the bound data to be changed.

Attributes

Required Attributes

Name Type Values Description
name string bind Defines the bind operation
value data expression|URL-to-XML The XML data to bind

Child Elements

component (Required)

Name Type Values Description
name string Any string value Required. The component to bind

the data to
view string Any string value Required. The view where the

component is located
select xpath xpath Optional. Relative or absolute

path for selection
model enumeration default , none, data, clone, base Optional. Type of data handling

to use
transformer string URL Optional. XSL Transformer to

change the XML data
type enumeration default, focus Optional. Type of data binding to

perform
eval boolean true, false Optional. The entire XML element

is evaluated for expressions if
true

XIOS/3 Developer Manual - 2022-06-09 137/164

paging (child element of component. Optional)

Name Type Values Description
size integer 1...[n] Required. Defines the amount of

node-sets that will be displayed
per page

asc boolean true, false Optional. Defines if the results
should be bound in ascending
order or not

order string XPath Optional. Defines by which
element the order should be
performed. The value can point to
an element or an attribute

Syntax and Examples
Syntax

1 <operation name="bind" value="[expression|xml]">
2 <component view="[string]" name="[string]" select="[xpath]"/>
3 </operation>

Example

1 <operation name="bind" value="home://Documents/mydata.xml#/profiles/user[1]">
2 <component view="view1" name="component1" select="@name"/>
3 <component view="view1" name="component2" select="@city"/>
4 </operation>

Example: Here we bind two different attributes from the first user element contained within mydata.xml

1 <operation name="bind" value="#view1#tree1">
2 <component view="view1" name="list2"/>
3 </operation>

Example: Here we bind the data stored inside a component (tree1) to another component (list2)

Related operations
setSelection

call
This operation is used to call other steps.

Usage
Using this operation you can call/evoke a step and also add which operation start the step should begin with. It is a single line element which
is controlled using the value attribute which contains id of the step which we intend to call and the step number (separated by a colon).

The operation will call the step which will execute all its operations and then the step that contained the original call operation will resume.

Attributes

Required Attributes

Name Type Values Description
name string call Defines the call operation
value string identifier The step to execute

Child Elements

trigger (optional)
The trigger element allows the calling step to controll the incomming trigger for the step being called. The value attribute defines the sent
trigger.

Name Type Values Description
model string value or empty The model attribute can be set to

value in order to use the value
attribute as plain text to not be
parsed as an expression.

value string Any string value Use the value attribute on the
element to define the trigger.

yield (optional)
The yield element allows the user interface update before the step is called. The text() node value can be set to either true or false where the
default value is true if the element is used.

param (optional)
The param element is used to define the name and value of a local scope alias (variable). The element uses two attributes "name" and
"value".

Name Type Values Description
name string Any string value The name of the parameter which

can be used in the step called
value string Any string value The value of the parameter

timer (optional)
The timer element is used to define a timer for when the step will be called a single time or over and over again.

Only a single attribute can be used, either interval or wait
XIOS/3 Developer Manual - 2022-06-09 138/164

Name Type Values Description
interval string 1...n, stop The number of milliseconds

between step calls or if the timer
should be stopped

wait integer 1...n The number of milliseconds until
a step should be called

Syntax and Examples
Syntax

1 <operation name="call" value="[string]"/>

Example

1 <operation name="call" value="22"/>

Example: Process code for the call operation

1 <operation name="call" value="23:3"/>

Example: Process code for call step 23 and start executing with the third operation in that step

1 <operation name="call" value="10">
2 <yield>true</yield>
3 </operation>

Example: Process code for calling step 10 which allowing the user interface to be updated before the call is performed

1 <operation name="call" value="22">
2 <param name="subject" value="Hello"/>
3 </operation>

Example: Process code for calling step 22 and pass a parameter that will be available as an local scope alias

1 <operation name="call" value="22">
2 <timer interval="2000"/>
3 </operation>

Example: Process code for calling step 22 after 2000 milliseconds

callMethod
This operation will is used to execute methods on components and even to send parameters to them,

Usage
A list of available methods than can be used can be found in the methods section in "UI Development". Observe that some of the methods
listed are not evoked using callMethod but instead appended to an expression.

You might also notice that some methods are executed without any additional parameters while other require that something is placed inside
the parameter.

The type attribute on the param element is optional, and the default value for the attribute is string.

Attributes

Required Attributes

Name Type Values Description
name string callMethod Defines the callMethod operation
value expression expression The view or component on which

the method should be performed

Optional Attributes

Name Type Values Description
wait boolean false, true Wait for asynchronous methods

to finish before advancing to the
next instruction.

then string Any string value What step to execute once all
methods have completed. Good
for asynchronous methods
without having to stall execution
by using wait.

Child Elements

method (Required)

Name Type Values Description
name string call Defines the call operation

param (Child element of method element. Requirement depends on the specific method used.)

Name Type Values Description
type enumeration string, boolean, integer, float,

null, xml, winEvt
Optional. How the contents
should be interpreted.

XIOS/3 Developer Manual - 2022-06-09 139/164

text() (Child node of param element)
The text() node of param contains the information that is to be passed to the component. By default this value is passed on as a white space
aware string, but using the type attribute the content can be parsed into something different. The types integer and float are simply parsed
as such. The boolean type inteprets the string "true" as true and everything else as false. The xml type will give all its children as a fragment
node to the function. The types null and winEvt will ignore its content and in the first case simply send null, and in the second case send the
event node from the window, representing the user event that triggered this step to process, if any.

Syntax and Examples
Syntax

1 <operation name="callMethod" value="expression">
2 <method name="methodName">
3 <param type="[enumeration]">[string|boolean|integer]</param>
4 </method>
5 </operation>

Example

1 <operation name="callMethod" value="#view1#component3">
2 <method name="setValue">
3 <param type="string">hello</param>
4 </method>
5 </operation>

Related operations
action

callService
This operations allows XIOS/3 applications to communicate with external web services

Usage
This operation is very complex and does require that you create a channel in order to utilize a web service. The operation does however also
support HTTP request using the GET method.

First information must be provided in to the value attribute. It complex URL that needs to be provided contains a way of calling a specific
method, a way of uniquely identify the data document using the URL and also define if the web service should be called in a specific interval.

weather://forecast/Linkoping/@60 will contact the channel defined as weather, and execute the "forecast" method. The string "Linkoping" can
actually be any string. its primary use is to allow the developer to create unique data documents even though the same exact web service is
being used. The last part of our custom URL "@60", instructs the system that this URL (web service call) should be updated every 60 seconds.
When loading documents using "/@0", any polling that exists to that specific adress will be stopped.

Observe that if a soapaction is provided as a child element then it "method" set in the value attribute is no longer the method used, instead
the value in the soapaction will be called. The document created will still be named after the value in the value attribute of the operation.

The operation will halt your process code by default, however you can change this by adding the wait child element as set the text() node to
false. This will allow the process code to continue to execute without having to wait for the reponse. It is important to understand that the XML
response data is not available until a response is made, so it is generally a good idea to use the default setting which is true.

Attributes

Required Attributes

Name Type Values Description
name string callService Defines the callService operation
value string URL SOAP method, URL identifier and

re-connect timer

Child Elements

wait (Optional)
Decides if the process code should continue executing even if no response has been received from the web service. If set to false the process
code will continue without having to wait for the process code to continue. This however means that the alias might not contain XML data if no
response has been received.

Value can be either true or false. The default value is true.

soapaction (Optional)
If it is present its text() node will override the soapaction in the value attribute of the operation.

< SOAP MESSAGE > (Optional. Only used with soapaction element.)
Actual SOAP message intended for the endpoint of the message

method (Optional. Only used when using HTTP requests)
When using services over http you can specify the method to use; GET

Syntax and Examples
Syntax

1 <operation name="callService" value="[channel://method/id/@numeric]">
2 <wait>[boolean]</wait>
3 <soapaction>[string]</soapaction>
4 <method>[enumeration]</method>
5 <SOAP MESSAGE/>
6 </operation>

Example

XIOS/3 Developer Manual - 2022-06-09 140/164

1
2 <operation name="callService" value="weather://myDocName/StockholmFC1/@60">
3 <soapaction>http://www.webservicex.net/GetWeather</soapaction>
4 <GetWeather xmlns="http://www.webservicex.net">
5 <CityName>Stockholm</CityName>
6 <CountryName>Sweden</CountryName>
7 </GetWeather>
8 </operation>
9

10 <!-- debug value of web service document -->
11 <operation name="debug" value="weather://myDocName/StockholmFC1/@60"/>

Example: Process code for the callService operation

1
2 <operation name="callService" value="http://xcerion.com/example/">
3 <wait>true</wait>
4 <method>GET</method>
5 <param name="firstname">{$name}</param>
6 <param name="lastname">{$lastName}</param>
7 <param name="email">{$email}</param>
8 <param name="from">{#Invite#inputYourName}</param>
9 <param name="message">{#Invite#textarea}</param>

10 </operation>
11

Example: callService using GET method

Related operations
channel, login

change
This operation is used to manipulate XML data and is the key to using the XIOS/3 filesystem

Usage
It offers five different ways of storing data and can also be used to delete data. The five store types are append, replace, replaceText, prepend
and insert.

Append will add the node-set supplied in the text() node. Replace will replace the selected node-set with the new node-set supplied in the
text() node, while the replaceText will is to only replace text() nodes or attributes. ReplaceText will also create the attribute if did not already
exist.

The prepend type will also add the data supplied but unlike the append type it will be placed at the top of the XML document. Insert type is
used to insert XML data in to components such as the XIOS/3 filesystem.

Deleting data is done by either deleting the current selection of a component or by supplying an XPath expression in the select attribute.

Attributes

Required Attributes

Name Type Values Description
name string change Defines the change operation
value expression expression The XML data (URL or

Component) to which the change
should be performed

Child Elements

store (Optional)
Defines that the information should be stored according to the option chosen in the type attribute.

Name Type Values Description
select xpath xpath Optional. Using relative xpath

define in which element to store
information

transformer string URL Optional. XSL Transformer to
change the XML data

type enumeration append, insert, move, prepend,
replace, replaceText

Required. The type of store to use

value xpath xpath Required for move. The element
to move to the selected
destination

Type Description
append Appends XML data to the end document
insert Inserts an XML node-set in the document after the current selection
move Moves an XML node-set from one part of the document to another

part
prepend Appends an XML node-set at the beginning of the document
replace Replaces the selected XML node-set with the provided node-set
replaceText Replaces the selected attribute or text()-node with a new value

text() (Child node of store element)
The text() node of store contains XML information or text that is to be appended or that is to replace some other XML or text.

delete (Optional)
Defines that the selected information should be deleted.

Name Type Values Description

XIOS/3 Developer Manual - 2022-06-09 141/164

select xpath xpath Optional. What type of data is to
be sent

Syntax and Examples
Syntax

1 <operation name="change" value="[expression]">
2 <store select="[xpath]" type="[enumeration]">[node-set|string|boolean|integer]</store>
3 </operation>

Examples

1. append (Adding XML data)
Will append a node-set to a data document (or atom:feed). The added data will be appended at the bottom of the document. Append can be
used to create new files in the XIOS/3 filesystem.

1
2 <operation name="change" value="home://Documents/">
3 <store select="/atom:feed" type="append">
4 <atom:entry>
5 <atom:title>{#view1#subject}</atom:title>
6 <atom:author>{#view1#author}</atom:author>
7 <atom:content>{#view1#post}</atom:content>
8 </atom:entry>
9 </store>

10 </operation>

Example: Process code for the change operation (append)

2. replace (Replace or update XML data)
Will replace an entire node-set

1
2 <operation name="change" value="#view1#component1">
3 <store select="task" type="replace">
4 <task>
5 <startDate>{#view1#tcStartDate}</startDate>
6 <status>{#view1#status}</status>
7 <description>{#view1#appRichtext}</description>
8 </task>
9 </store>

10 </operation>

Example: Process code for the change operation (replace)

3. replaceText (create attributes or replace text() nodes or attributes)
Will replace just the text()-node. This can be used to rename files and folders.

1 <operation name="change" value="#view1#component1">
2 <store select="task/@complete" type="replaceText">true</store>
3 </operation>

Example: Process code for the change operation (replaceText)

4. Prepend (Appending XML data)
This type will add the XML data but instead of the bottom of the document it will be added at the top of the document.

1 <operation name="change" value="#view1#component1">
2 <store select="atom:feed" type="prepend"><myElement>Will become the first post</myElement></store>
3 </operation>

5. Insert (Inserting XML data in to component)
This type will insert XML data in to a component, such as the RichText.

1 <operation name="change" value="#view1#component1">
2 <store type="insert"><P>Hello</P></store>
3 </operation>

6. Delete (Removing XML data)
Will delete the selected node-set. If passed a component it will delete the selection, else you need to supply it with a selection.

1
2 <operation name="change" value="home://Documents/">
3 <delete select="/atom:feed/atom:entry[atom:title='{$fileTitle}']"/>
4 </operation>

Example: Process code for the change operation (delete)

7. Move (Move an XML node-set to another part of the document)
Will move letter F (source) and place it before letter C (destination).

1
2 <alias name="dataDoc" value="#MoveTest"/>
3
4 <operation name="create" value="$dataDoc">
5 <list>
6 <letter>A</letter>
7 <letter>B</letter>
8 <letter>C</letter>

XIOS/3 Developer Manual - 2022-06-09 142/164

9 <letter>D</letter>
10 <letter>E</letter>
11 <letter>F</letter>
12 </list>
13 </operation>
14
15 <operation name="change" value="$dataDoc">
16 <store type="move" select="/list/letter[. = 'C']" value="$dataDoc#/list/letter[. = 'F']" model="data"/>
17 </operation>

Example: Process code for the change operation (move)

Related operations
create

close
This operation is used to close documents from XIOS/3, by clearing them from the cache.

Usage
This operation is used to close applications, XML documents, file listings and even clearing the cache. This is done by supplying the name of
the object that we intend to close or the URL of the document or feed that we are using. This is then combined with the mode child element
and its text() node to define what we are trying to close.

To close applications the text() node must contain the word "application". For views we use "view" and for process files we use "process".
Documents and atom feeds (file listings) we use the "document" option. To clear the xios document cache we simply write "document_cache"
and do not supply any value attribute on the operation element.

The "system" option will clear all vital managers (communication and document) and prepare the system for logout. It does however not
logout from the system instead it conserves the privacy of the user.

Attributes

Required Attributes
Name Type Values Description
name string close Defines the close operation
value string Any string value Defines what should be closed

Optional Attributes
None Available.

Child Elements

mode (Optional)
This child element is not controlled by attributes but instead with the text() node.

text() (Child node of mode element)
The type of close that should be executed. Available values are "application", "channel" "document", "document_cache", "process", "system"
or "view".

Syntax and Examples
Syntax

1 <operation name="close" value="[string]"/>

1. Closing view files

1 <operation name="close" value="addUser">
2 <mode>view</mode>
3 </operation>

This will close the view called addUser (as defined by the name attribute of the view file).

2. Closing documents or search feeds

1 <operation name="close" value="home://Documents/clients.xml">
2 <mode>document</mode>
3 </operation>

3. Clearing the document cache

1 <operation name="close">
2 <mode>document_cache</mode>
3 </operation>

Related operations
open

create
This operation is used to create a XML node-set by creating a new object (temporary document).

Usage
We create an object by writing the name of the object in expression form. This requires that a hash sign is placed in front of the name of the

XIOS/3 Developer Manual - 2022-06-09 143/164

object. When calling the object we then call for #objectname.

While we can create empty objects by not adding any XML data to the text() node the most common is to create at least a root element.

Attributes

Required Attributes
Name Type Values Description
name string create Defines the create operation
value expression expression The object that we want to create

Child Elements

text() (Required)
The text() node contains the XML node-set of the newly created object.

Syntax and Examples
Syntax

1
2 <operation name="create" value="[expression]">
3 [XML node-set]
4 </operation>

Example

1
2 <operation name="create" value="#Clipboard">
3 <clipboard/>
4 </operation>

Example: Here we create a temporary #Clipboard that can be used as long as the application is running

Related operations
change

channel
This operation is used to create a communicator that can communicate to a web service.

Usage
When mounting groups we first supply the name of the communicator in the value attribute on the operation element. To mount normal
groups the value of this attribute will always be "xios". When mounting subgroups (groups within groups) we use the name of the group
communicator instead. In the mount element we define as what the channel will we mounted and then in the text() node the name of the
group (or subgroup).

Attributes

Required Attributes

Name Type Values Description
name string channel Defines the channel operation
value string string Communicator to use

Child Elements (for internal channels / groups)

mount (Required. For mounting groups)

Name Type Values Description
name string Any string value Required. Resulting channel

name of the group
friendly string Any string value Optional. Resulting channel name

of the group

text() (Child node of mount. Required)
The text() node contains the name of the Group that we indent to mount.

Child Elements (for external channels)

name

Name Type Values Description
text() node string Any string value Name identifier of the service

title

Name Type Values Description
text() node string Any string value Welcome message for when

service mount has been
successfull

friendly

Name Type Values Description

XIOS/3 Developer Manual - 2022-06-09 144/164

text() node string Any string value Friendly name for when channels
has been mounted

protocol

Name Type Values Description
text() node enumeration XMLFS, WebServices Type of protocol to use

soapaction

Name Type Values Description
text() node string URL URL to webservice SOAP action

wsdl

Name Type Values Description
text() node string URL URL to webservice WSDL file

session

Name Type Values Description
text() node string ? ?

port

Name Type Values Description
text() node numerical 1-n Port number of service

interval

Name Type Values Description
text() node numerical 1-n Seconds between web service

requests

offline

Name Type Values Description
text() node enumeration default, use-cache Defines communication behavior

when user is offline

primary

Name Type Values Description
text() node boolean false, true Defines if the channel is to be

identified as the primary channel
for the user

language

Name Type Values Description
text() node string URL Path to Protocol XML Schema

(XSD file)

namespace

Name Type Values Description
prefix string Any string value Namespace prefix
text() node string URI URI identifier for namespace

Syntax and Examples
Syntax (Internal channel : Group)

1 <operation name="channel" value="[string]">
2 <mount name="[string]" friendly="[string]">[string]</mount>
3 </operation>

Syntax (External channel)

1 <operation name="channel" value="string">
2 <name>string</name>
3 <title>string</title>
4 <friendly>string</friendly>
5 <protocol>string</protocol>
6 <soapaction>string</soapaction>
7 <wsdl>string</wsdl>
8 <session>enumeration</session>
9 <port>integer</port>

10 <interval>ineger</interval>
11 <offline>enumeration</offline>
12 <primary>boolean</primary>
13 </operation>

Example (Internal channel : Group)

1 <operation name="channel" value="xios">
2 <mount name="xidezone" friendly="x-zone">XideZone</mount>
3 </operation>

Example: Process code for the channel operation

Example (Internal channel : subGroup)

1 <operation name="channel" value="xidezone">
2 <mount name="xidezoneVIP" friendly="xzVIP">XideZoneVIP</mount>

XIOS/3 Developer Manual - 2022-06-09 145/164

3 </operation>

Example: Accessing a subgroup of XideZone called XideZoneVIP. Observe that we are using xidezone as the parent communicator

Example (External channel)

1 <operation name="channel">
2 <name>https</name>
3 <title>HTTPS</title>
4 <protocol>HTTPS</protocol>
5 </operation>

Example: Process code for the channel operation

Related operations
login

debug
This operation is used to debug applications in when developing for XIOS/3.

Usage
Several different ways of debugging applications is offered. Two of the debug options utilize the XIOS/3 debug window. When omitting the
text() node and when using the "full" option information will be outputted in the debug window which can contain detailed information about
components and data. Observe that these are only visible in the debug window and that end-users will not see them. Using the alert or
alert:plain options the process code will be halted until you click on the button that appears in the dialog window.

The other two debug options will make debug windows appear. Using "alert" will open a system alert window while the process code will still
be executed. Due to this several system dialogs can be displayed at the same time once your processes code is done executing and the last
debug window will be on top.

Enabling Debug
To simplify development, XIOS/3 can be turned in to "debug" mode. This is done by activating debug using the Control Panel application, click
Development and choose Yes for "Activating debugging traces". You may now toggle the debug window by clicking on the blue icon in the top
right corner.

Attributes

Required Attributes

Name Type Values Description
name string debug Defines the debug operation
value expression|string expression, Any string value What we intend to debug

Child Elements

text() (Optional)
While the text() node is optional it is used to control how the debug information is displayed. The allowed values of text() are: "alert",
"alert:plain", "full".

Syntax

1 <operation name="debug" value="[expression|string]">[enumeration]</operation>

Example
1. debug (in debug window)

1 <operation name="debug" value="Text output in debug window"/>

Example: Here the text will be outputted in the debug window

2. debug (system dialog - will halt processcode)

1 <operation name="debug" value="#view#component#/section[1]">alert</operation>

Example: XML data output in a XIOS/3 dialog window. The process code will continue to run uninterrupted in the background.

3. debug (JavaScript dialog - will halt processcode)

1 <operation name="debug" value="#view#component#/section[1]">alert:plain</operation>

Example: XML data output in a JavaScript-style alert-dialog window. The process code will halt until you click the OK-button.

4. debug (details in debug window)

1 <operation name="debug" value="#view#component">full</operation>

Example: Detailed information about the component from the processing language.

decision
This operation defines a switch-statement which is used to test conditions.

Usage
The operation has two elements, "when" and "otherwise". The "when" element is used to test if an XPath condition is true or false. If it is true

XIOS/3 Developer Manual - 2022-06-09 146/164

then the step supplied in the step attribute will be executed. If no step attribute is given, the first statement with a true test will execute the
contents of the element.

There is an "exists" attribute that can be used instead of the "test" attribute to test if a specific file in the filesystem exists. This attribute can
only be set to "true", i.e. setting it to "false" will not execute the statement if the file does not exists.

Since the decision operation is a switch statement, it will go through all of the "when" tests in order until one of them tests true. If none of
them do, the "otherwise" element is unconditionally executed. The placement of the "otherwise" element doesn't matter.

This operation allows nestled logic (operations or aliases). Meaning that you can add operation elements as child elements to the "when" and
"otherwise" elements. Once the conditions have been met the operations are executed. The step attribute has higher priority than inline
operations meaning that if both an attribute and inline operations exist the attribute is used. It is accetable to not have either an attribute or
inline operations which would meet a condition but do nothing.

Attributes

Required Attributes

Name Type Values Description
name string decision Defines the decision operation

Optional Attributes

Name Type Values Description
value expression|string expression, Any string value What we intend to apply tests on

Child Elements

when (Required)
Any operations that should be exeucted can be placed directly within the when element as child elements which are executed once the
condition is true.

Name Type Values Description
exists boolean true If a file exists
test condition condition The XPath condition to test
step string identifier The step to execute

otherwise (Optional)
Any operations that should be exeucted can be placed directly within the otherwise element as child elements which are executed once the
condition is true.

Name Type Values Description
step string identifier The step to execute

Syntax and Examples
Syntax

1 <operation name="decision" value="[string]">
2 <when test="[condition]" step="[string]"/>
3 <otherwise step="[string]"/>
4 </operation>

Example

1 <operation name="decision" value="#view1#mails">
2 <when test="count(/documents/item) = '0'" step="18"/>
3 <when test="count(/documents/item) = '1'" step="19"/>
4 <when test="count(/documents/item) = '2'">
5 <operation name="debug" value="TWO">alert:plain</operation>
6 </when>
7 <otherwise>
8 <operation name="debug" value="SOMETHING ELSE">alert:plain</operation>
9 <operation name="call" value="200"/>

10 </otherwise>
11 </operation>

Example: Process code for the decision operation

1 <operation name="decision" value="#view1#comp1">
2 <when test="self::*">
3 <operation name="debug" value="Element Match!">alert:plain</operation>
4 </when>
5 <when test="not(self::*)">
6 <operation name="debug" value="Attribute Match!">alert:plain</operation>
7 </when>
8 <when test="*">
9 <operation name="debug" value="This element has childnodes!">alert:plain</operation>

10 </when>
11 </operation>

Example: Testing node relationships

filesystem
This operation offers various ways of handling filesystem instructions.

Usage
Each filesystem operation can only have one single child element at any given each. Below is a list of available child elements. Each of these
is an instruction that is applied on a file or folder of your choosing. The operation was created to solve much of the issues regarding the
filesystem, and to make it easier to manage files.

Automatic renaming is supported by default to make sure that name collisions do not occur.

The create instruction is used to create files and has two attributes, "type" and "name". The "type" attribute is an enumeration type attribute
and defines to and can be set to "file", more options will follow. The "name" attribute defines the name of the newly created file or folder. You

XIOS/3 Developer Manual - 2022-06-09 147/164

can include several create elements inside the operation.

The delete instruction is used to delete files and folders and has two attributes, "permanent" and "silent", both which are boolean type
attributes. If permanent is set to true the file will be permanently deleted, and setting it to false will only delete it to the trashcan. The silent
attribute controls the end-user interaction, when set to true it will wait until confirmation from the end-user.

The copy instruction is used to copy files and folders and has two attributes, "to" and "silent". The "to" attribute is a string type attribute, and
is used to define the destination folder. The "silent" attribute is a boolean type attribute and it controls the end-user interaction, when set to
true it will wait until confirmation from the end-user. You can include several copy elements inside the operation.

The move instruction is used to move files and folders and has two attributes, "to" and "silent". The "to" attribute is a string type attributes,
and is used to define the destination folder. The "silent" attribute is a boolean type attribute controls the end-user interaction, when set to
true it will wait until confirmation from the end-user. You can only have a single move element inside the operation.

The rename instruction is used to rename files and folders. There is only a single attribute "to" which is a string type and should contain the
new name of the file or folder.

The attach instruction is used to attach files to other files. It has two attributes "to" and "slot". The attribute "to" is a string type attribute,
which defines to which file we are trying to attach a document to. The second attribute "slot" is a numeric type attribute and defines the
attachment slot to remove. Observe that slot 1 is the actual file, so the first attachment actually has slot number 2. If the slot attribute is
omitted the operation will find an unused slot by itself.

The detach instruction is used to detach attachments from files. It has only one attribute "slot" which is a numeric type attribute and defines
the attachment slot to remove. Observe that slot 1 is the actual file, so the first attachment actually has slot number 2.

The upload instruction is used to upload files to a destination folder. It has only one attribute "to" which is a string type attribute and defines
the destination folder. Observe that when using the upload instruction the value attribute on the operation element should be omitted.

The trahscan instruction is used to deal with the system trashcan. The "value" attribute is used for two different purposes depending on the
value in the "action" attribute. If the action is to "empty" the trashcan then "value" attribute should contain the string text "xios". If however
the purpose is to "restore" a file then the "value" attribute should contain a string referencing to the xios-url of the file which should be
restored. The trashcan element also has a "silent" attribute which allows the developer to define if the end-user should confirm that the
trashcan action should be performed.

The share instruction is used to share files/documents/photos and folders with friends. Any file or folder which the user has created in his
filesystem can currently be selected to be shared. The user may however not share a file which someone has shared with him. The instruction
only allows file sharing with people which are found in the user's friendlist (#Friends). This is combined with a access control list which applies
to all the users selected. There is also an optional comment which can be passed along the share instruction which can be displayed to the
user once he/share takes part of the share information. For the receiving user to files will be visible in his/her filesystem (home://) but the files
and folders are still in the control of the user which has shared the files. The files are not copied but infact the user performing the share
allows the user receiving the share access to read the files stored on his drive.

The listen instruction is used to listen to changes made in a folder or a document. The object to listen to is defined in the "value" attribute of
the operation element. A "listen" element is then added as a child element to the operation element. This element has two attributes "event"
and "step". The "event" attribute defines the event identifier to fire when the contents of the file or folder have changed. Here you are allowed
to define any value. The "step" attribute contains which step to call once the event is fired. Both attributes are required.

The unlisten instruction is used to remove a file or folder listener (see above). The object to remove the listener from is defined in the "value"
attribute of the operation element. A "unlisten" element is then added as a child element to the operation element. This element has a single
attribute "event" which defines which listener to remove specifically. The attribute is required.

The publish instruction is used to externally publish files and folders.

The unpublish instruction is used to unpublish files or folders that are already published.

The mount instruction is used to mount a new filesystem.

Attributes

Required Attributes

Name Type Values Description
name string filesystem Defines the filesystem operation
value string Expression The data to which the operation

will be performed

Child Elements

create (Optional)

Name Type Values Description
type enumeration file, folder Required. Defines what is to be

created
alias string Any string value Optional. Name of alias to be

created containing the new folder
as the value

name string Any string value Optional. The name of the file or
folder to be created

rename boolean false, true Optional. If the file or folder
should be autorenamed

author (Child element of create. Optional)
The author element contains information that is placed in the atom:author element inside the file feed. The element can have two different
elements as child elements, the "name" element which contains the value of "atom:author/atom:name" and the "email" element which
contains the value of "atom:author/atom:email".

summary (Child element of create. Optional)
The summary element contains the value that is stored in the atom:summary element inside the file feed, and can be used for a short
description of the file.

acl (Child element of create. Optional)
The acl (Access Control List) element can contain information about access rights. It can contain user or group elements which in turn have
several attributes.

Name Type Values Description
id integer [n] Required. The id of the user or

group

XIOS/3 Developer Manual - 2022-06-09 148/164

read boolean true, false Required. Defines if the user or
group has right to read the
content of the file or folder

write boolean false, true Required. Defines if the user or
group has right to write content
in the file or folder

delete boolean false, true Required. Defines if the user or
group has right to delete the file
or folder

changeACL boolean false, true Required. Defines if the user or
group has right to change the
rights of the file or folder

index (Child element of create. Optional)
The index element can contain information of the desired meta data that is to be added to the file created. The element has one or more key
elements which define the meta data element

Note that this only works for files since folders do not support meta data.

key (Child element of index. Optional)
It is important to understand that since file searching (using atom and dc namespaced elements) are done using only the local-name of the
elemnent (ie a for the atom:name value "Goran" is done by typing in "name:Goran"). This means that you must NOT name your dc-elements
to names already used by the atom specification (eg name, summary, author etc).

Key elements with the index attribute value set to true will be available as "dc:[name]" (eg dc:something) and those with name value false
will be available as "ni:[name]" (eg ni:something). The dc-namespaced are searchable while the ni-namespaced elements are not.

Name Type Values Description
name string Any string value (please read

description text above)
Required. The name of the meta
data element

index boolean Any string value (please read
description text above)

Required. Defines if the value
should be indexed (searchable) or
not

content (Child element of create. Optional)
The content element has different values depending on the value of the type attribute on the create element. If the type value is file then the
content folder accepts a type attribute for which file type the file should have, the default value is "text/xml". Inside the content element the
entire file content can be added, if the file is an XML file.

If the create element's type attribute value is "folder" then the content attribute contains the potential value of the content attribute on that
folder's folder-element in folders.xml.

Name Type Values Description
type string File type Optional. The filetype association

of the created file

delete (Optional)

Name Type Values Description
permanent boolean true, false Optional. Defines what is to be

created
silent boolean true, false Optional. Defines if the end-user

should be asked to confirm

move (Optional)

Name Type Values Description
to string URL Required. Destination folder
silent boolean true, false Optional. Defines if the end-user

should be asked to confirm

copy (Optional)

Name Type Values Description
to string URL Required. Destination folder
silent boolean true, false Optional. Defines if the end-user

should be asked to confirm

rename (Optional)
The rename instruction is used to rename files or folders. The value attribute of the operation element should contain the XIOS URL of the
folder or file.

Name Type Values Description
to string Any string value Required. Defines the new name

of the file/folder

attach (Optional)
The attach instruction accepts XIOS/3 http URLs.

Name Type Values Description
to string URL Required. Destination file
slot numerical 2...n Optional. Attachment slot

number. Slot 1 is occupied by
actual file

detach (Optional)

Name Type Values Description
slot numerical 2...n Required. Attachment slot

number. Slot 1 is occupied by
actual file

XIOS/3 Developer Manual - 2022-06-09 149/164

upload (Optional)
When the file is uploaded it will be added to the file feed, and placed in the correct alphabetical order. If there is no sorting order (as might be
the case when doing a searchQuery) then the sorting order is defaulted to published.

Name Type Values Description
to string URL Required. Destination folder
to boolean true, false Optional. Defines if a flash

uploader should be used or not

trashcan (Optional)

Name Type Values Description
action enumeration restore, empty Required. Defines the action

performed to the selected file
silent boolean true, false Optional. Defines if the user

should confirm the action
performed

share (Optional)
Required Attributes
Name Type Values Description
useSelection boolean true, false Required. Defines if the selected

users should be allowed to read
the shared file(s)

The share instruction also has child elements, which when used with the value attribute on the filesystem element (the parent of the share
element) allows you to share your file with one or more users or groups, to set access control lists and to pass a comment.

The shared files will end up in the home://Friends/ folder under a folder named after the user that shared the files (eg
home://Friends/kurtCobain/).

users (Required. Child element of share)
This element should contain friend element nodes in the same format as found in #Friends. Thus the element contains a list of selected
friends.

comment (Child element of share. Optional)
The comment element contains a string of maximum 256 characters and should include a message a message which is passed on the the
users which the file is shared with.

listen (Optional)
The listen instruction is used to set up a listener for changes in a specific file or folder. Once a change has occured an event is fired and the
value of the "step" attribute is executed.

Observe that in order for this to work you need to define the object to listen to in the value attribute of the operation element as a path.

Required Attributes

Name Type Values Description
event enumeration New, Change, Append, Prepend,

Replace, ReplaceText,
RemoveNode, Delete

The file/folder change event to
trigger the execution step.

step string Any string value The step to execute once the
event has occured

unlisten (Optional)
The unlisten instruction is used to remove listeners that have previously been set up.

Observe that in order for this to work you need to define the object to listen to in the value attribute of the operation element as a path.

Required Attributes

Name Type Values Description
event string Any string value The event identifier to remove

mount (Optional)
The mount instruction is used to mount a new filesystem similarily to how channel sets up a new communication channel. The difference is
that a new filesystem is using an already established communication channel.

Required Attributes

Name Type Values Description
name string Any string value The protocol name of the

mounted drive.

Required Attributes

Name Type Values Description
friendly string Any string value The display name of the mount.

group (Child element of mount. Optional)
Mount a group.

Required Attributes

Name Type Values Description
name string Any string value The name of the group to mount.

drive (Child element of mount. Optional)
Mount a drive.

Required Attributes

XIOS/3 Developer Manual - 2022-06-09 150/164

Name Type Values Description

name string Any string value The name of the drive to mount.

Syntax and Examples
Syntax

1 <operation name="filesystem" value="[expression]">
2 <instruction/>
3 </operation>

Example: create (File)

1 <operation name="filesystem" value="home://Documents/">
2 <create type="file" name="MyNewDocument.xml">
3 <author>
4 <name></name>
5 <email></email>
6 <uri></uri>
7 </author>
8 <summary></summary>
9 <acl>

10 <user id="101" read="true" write="true" delete="false" changeACL="false"/>
11 </acl>
12 <index>
13 <key name="keywords" index="true"></key> <!-- will be indexed as dc:keywords -->
14 <key name="site" index="false"></key> <!-- will be indexed as ni:site -->
15 </index>
16 <content type="text/xml">
17 <something>My New File...</something>
18 </content>
19 </create>
20 </operation>

Example: The operation will create a new document called MyNewDocument.xml in the Documents folder.

Examples
Example: create (Folder)

1 <operation name="filesystem" value="home://Documents/">
2 <create type="folder" name="Contactbook">
3 <content>Contact</content>
4 </create>
5 </operation>

Example: The operation will create the folder 'Contactbook' inside the Documents folder. The folder content will be Contact file types.

Example: delete

1 <operation name="filesystem" value="home://Documents/MyDocument.xml">
2 <delete permanent="true" silent="false"/>
3 </operation>

Example: The operation will delete the MyNewDocument.xml in the Documents folder, permanently but will ask the end-user to confirm it.

Example: copy

1 <operation name="filesystem" value="home://Documents/MyDocument.xml">
2 <copy to="home://Applications/" silent="false"/>
3 </operation>

Example: The operation will copy MyNewDocument.xml in to the Applications folder, end-user will be asked to confirm it.

Example: move

1 <operation name="filesystem" value="home://Documents/MyDocument.xml">
2 <move to="home://Applications/" silent="true"/>
3 </operation>

Example: The operation will move the MyNewDocument.xml from the Documents folder to the Applications folder. The end-user will not have to confirm it.

Example: attach

1 <operation name="filesystem" value="http://xios3.com/image.jpg">
2 <attach to="home://myFile.xml" slot="2"/>
3 </operation>

Example: The operation will attach an a second attachment (http://xios3.com/image.jpg) to myFile.xml in the Documents folder

Example: detach

1 <operation name="filesystem" value="home://Documents/myFile.xml">
2 <detach slot="3"/>
3 </operation>

Example: The operation will detach the third attachment from myFile.xml in the Documents folder

Example: upload

1 <operation name="filesystem">
2 <upload to="home://Documents/"/>
3 </operation>

Example: The operation will detach the third attachment from myFile.xml in the Documents folder

Example: trashcan

1 <operation name="filesystem" value="xios">
2 <trashcan action="empty" silent="false"/>
3 </operation>

XIOS/3 Developer Manual - 2022-06-09 151/164

Example: The operation will empty the filesystem trashcan

1 <operation name="filesystem" value="home://Document/myDoc.xml">
2 <trashcan action="restore"/>
3 </operation>

Example: The operation will restore the specific document from the trashcan to the folder from which is was deleted

Example: share

1 <operation name="filesystem" value="#view1#gridFilesToShare">
2 <share useSelection="true">
3 <users>{#view1#gridSelectedFriends}</users>
4 <comment>{#view1#commentInputfield}</comment>
5 </share>
6 </operation>

Example: The operation will share the selected files with the selected users

Example: listen

1 <operation name="filesystem" value="home://Documents/">
2 <listen event="FileAdded" step="550"/>
3 </operation>

Example: The operation will listen to changes in the home://Documents/ folder and execute step 550 do perform some logic

Example: unlisten

1 <operation name="filesystem" value="home://Documents/">
2 <unlisten event="FileAdded"/>
3 </operation>

Example: The operation will remove the listener we created in the example above

foreach
This operation allows you to iterate an XML node set and execute operations while iterating.

Usage
To use the foreach operation you first need to provide an XML document, which could be either a URL, a plain document reference (ie
#document) followed by an XPath pointing to node-set which should be iterated or it could be an Expression which would cause the operation
to iterate over the selections. The complete expression string should be provided in the value attribute.

Inside the operation element you can add the operations that should be iterated in the for each process. The iterated node-set is available in
the trigger data (ie the exclamation mark - !). From that you can create new expressions to obtain the data from the node-set.

Attributes

Required Attributes

Name Type Values Description
name string foreach Defines the foreach operation
value string expression | parameters Defines the data document and

which node to iterate or iteration
parameters

Optional Attributes
None Available.

Child Elements

operation (Required)
Any process operation.

Syntax and Examples
Syntax

For iteration of XML nodes, such as for each atom:entry element in an atom:feed.

1 <operation name="foreach" value="[Xpath]">
2 <!-- process XML code that should be executed for each item-->
3 </operation>

Example: foreach process operation

For iteration by incrementation, such as for 1 to 10 with an incrementation of 2.

1 <operation name="foreach" value="[int..int], int">
2 <!-- process XML code that should be executed for each iteration-->
3 </operation>

Example: foreach process operation

The first two integers define the start and endindex. The third integer is optional and defines the incrementation and has the default value of
1.

Example

1 <step id="1" name="Iteration step">
2 <!-- iterate over file listing -->
3 <operation name="foreach" value="home://Documents/#atom:feed/atom:entry">
4 <operation name="debug" value="Document {!#atom:title}">alert:plain</operation>
5 </operation>

XIOS/3 Developer Manual - 2022-06-09 152/164

6
7 <!-- iterate over selections -->
8 <operation name="foreach" value="#view1#listview1">
9 <operation name="debug" value="Document {!#atom:title}">alert:plain</operation>

10 </operation>
11 </step>

Example: The operation will iterate over a flle listing and over set of selections

The trigger (!) contains the iterated node-set, which in this case is an atom:entry node set.

Example 2 - Interval Iteration

1 <operation name="foreach" value="12..25,3">
2 <operation name="debug" value="!">alert:plain</operation>
3 </operation>

Example: Iteration for a start index to an end index with intervals

The code above will start iterate from 12 to 25 with the interval 3. The value of the ! (trigger) will contain the current index value ie: 12, 15,
18, 21, 24.

Related operations
None available.

friends
This operation allows you to perform actions on friends or friend groups in the #Friends document (the user's list of friends).

Usage
The operation works by adding a instruction inside the operation element that defines which action should be performed and to which
user/group it should be performed.

The create instruction allows for creation of friend groups (roles).

The remove instruction allows for removal of friends and/or friend groups.

Attributes

Required Attributes
None available

Optional Attributes
None available

Child Elements (instructions)

create
Instruction for creating friend groups.

Attributes
Name Type Values Description
name string Any string value Name of friend group to create

remove
Instruction for removing friends and friend groups.

Attributes
Name Type Values Description
group string Any string value Name of friend group to remove
user integer userId Removes a friend with a specific

userId

groups
This operation allows you to perform action and receive information from groups.

Usage
By using child elements as instructions you will be able to perform any supported command. Each command is given as an instruction, of
which there can be more than one.

The accept instruction will allow a users to accept a group invitations, which in turn is done from inside the group by a member or an
administrator.

Attributes

Required Attributes

Name Type Values Description
name string groups Defines the login operation
value string * Context attribute, value depends

on each instruction used. See
separate instructions below for
details

Optional Attributes
None available

Child Elements (instructions)
XIOS/3 Developer Manual - 2022-06-09 153/164

accept
Attributes
Name Type Values Description
to string group path Absolute path to group from

which the user is accepting the
group invitation

addAvatar
The addAvatar instruction is used to save a group specific avatar for the user.

This instruction also uses the value attribute of the operation element to define the URL to the image, which to use.

Attributes
Name Type Values Description
height numerical 0...[n] Defines the height of the selected

image
left numerical 0...[n] Defines the left edge of the

image to start cropping from
to string group path Absolute path to group from

which teh user is accepting the
group invitation

top numerical 0...[n] Defines the top edge of the
image to start cropping from

width numerical 0...[n] Defines the width of the selected
image

deleteAvatar
This instruction is used to delete the current avatar for a specific group. It does not utilize the value attribute. It will delete the ni:avatar
element from the user's atom:entry data (user's group profile data).

The group path is for first level groups just the group name. For second level groups (groups beloning to groups) must provide the full path (ie
'firstGroupName/subgroupName').

Attributes
Name Type Values Description
group string groupPath The path of the group for which

the avatar should be deleted

isPublic
This instruction also uses the value attribute is used to define which group to check.

Attributes
Name Type Values Description
alias string Any string value The name of the alias that will

contain the returned value (true
or false)

Syntax

1 <operation name="groups">
2 <instruction to="[string]"/>
3 </operation>

Example (accept)

1 <operation name="groups">
2 <accept to="home://Groups/{$group}"/>
3 </operation>

Example (addAvatar)

1 <operation name="groups" value="{$dropSrc}">
2 <addAvatar to="xios" left="0" top="0" width="128" height="128"/>
3 </operation>

Example (isPublic)

1 <operation name="groups" value="home://Groups/XideZone">
2 <isPublic alias="publicGroup"/>
3 </operation>

login
This operation allows you to connect to password protected web services

Usage
Login requires the inbound data to be equal to the data used that is used when a communicator is created. We listen to the "Login" event from
the new communicator. The trigger (!) available when the event is caught will be equal to the channel operation and it is this information that
the login operation uses to access the communicator.

An example of how the trigger-element used to catch the event might look like can be found at the bottom of this page.

We then proceed to add a username and password in the text() nodes of the respective child elements.

Attributes

Required Attributes

Name Type Values Description
name string login Defines the login operation

XIOS/3 Developer Manual - 2022-06-09 154/164

value string Any string value The communicator to use

Child Elements

username (Required)
The username is supplied in the text() node. No attributes are available.

password (Required)
The password is supplied in the text() node. No attributes are available.

reset (Optional)
If the current connection should be reset. This is an optional element. No attributes are available.

Syntax and Examples
Syntax

1 <operation name="login" value="[node-set]">
2 <username>[string]</username>
3 <password>[string]</password>
4 <reset>[boolean]</reset>
5 </operation>

Example

1 <operation name="login" value="!">
2 <username>{#Login#Username}</username>
3 <password>{#Login#Password}</password>
4 </operation>

Example: The operation will login to the channel alias

Trigger element used to capture the Login event from the newly created xios communicator, which will make the information in the channel
operation available as (!):

1 <trigger communicator="xios" event="Login" step="20"

Related operations
channel, callService

navigate
This operation is used to nagivate in XML documents

Usage
Navigate uses the expression supplied in the value attribute. Looking at the event model we expect the expression to contain an URL to the
XML document, an xpath and a selection. More about expressions can be found in the " Using Expressions" section.

It is by using navigate that we can change the selection while the data making the new information available in the trigger (!). Observe that
the selection will not have been made on the component which the data came from. Using this we can keep track of which file is "next"
(following) and which is "previous" (preceding) relative to the current file.

Note: In the case of multiple selections the axis will be applied to all of the selections.

Attributes

Required Attributes

Name Type Values Description
name string navigate Defines the navigate operation
value expression expression XML node-set to navigate

Child Elements

call (Required)

Name Type Values Description
axis enumeration parent, preceding, following, first,

last
which axis to nagivate to

element string Any string value If the navigation should be limited
to an element (without
namespace)

step string identifier The step to execute

Syntax and Examples
Syntax

1 <operation name="navigate" value="[expression]">
2 <call axis="[xpath-axis]" step="[string]"/>
3 </operation>

Example

1 <step id="15" name="Goto Previous Operation">
2 <operation name="navigate" value="!">
3 <call axis="following" step="10"/>
4 </operation>

XIOS/3 Developer Manual - 2022-06-09 155/164

5 </step>

Example: When this step is called it will jump to the parent of the selected node in the tree-component and then execute step 10.

open
This operation is used to open process, view and application files.

Usage
A URL to the file that we are opening must be supplied in the value attribute. Then there are a number of optional child elements that can be
used when opening new files, some are specific to process files and some to view files. Observe that application files count as both so process
and view (if such files exist in the application package).

When dealing with process files, we can pass it information. The trigger element contains the trigger that we wish to send to the new process
files. The step element contains a reference to the starting step. If no value is supplied here it will try to open step 1. The context element we
can be set to true which will allow the new process file to share aliases. Context also allows you to send parameters to the process files that is
being called by adding param elements, which then if context is set to true makes aliases from calling process inherited instead of shared.
Each param element has a name attribute which is mandatory since parameters are retrieved in the new process file using this name as
$paramname. Set context to false if you do not want the default context sharing within an application package and its processes.

If you need to open a process, have aliases shared across them, and allow the new process to execute and have access to the running view
with the same expressions to access UI components as in the original context, you need to set the context element to true and provide the
trigger element with a value attribute set to "!", in addition to the step element with the id attribute of step to call in the new process. This is
very useful when modularizing code for different sections of the application into multiple process files.

When dealing with view files can can decide what window mode should be used by using the window element. While the window mode is the
default it can also be set to open in fullscreen mode using the fullscreen value.

NOTE: In order to open a view or application correctly it needs to be opened after bootup logic has been applied such as cathing the trigger
data (!) and saving it as an alias.

Attributes

Required Attributes

Name Type Values Description
name string open Defines the open operation
value string URL The file/website/application we

intend to open

Optional Attributes

Name Type Values Description
secure boolean false, true If the https protocol should be

used

Child Elements

param (Optional)
Several parameters can be added and are available as aliases in the process file opened. Parameters can be sent to Process XML files and
Application Files.

Name Type Values Description
name string Any string value The name of the parameter
value string Any string value Value of the parameter

name (Optional)
No attributes available only text() node is used.

position (Optional)
Places the opened view at the given position, unless there is a saved window state for the user.

Name Type Values Description
x integer Positive or negative integer Set the horizontal position of the

view
y integer Positive or negative integer Set the vertical position of the

view
rel expression expression View or component to be relative

against. Relative against upper
left corner. If used x and y will be
added to the relative position.

trigger (Optional)

Name Type Values Description
model enumeration data, value Defines the incomming trigger for

the step to be executed, use "!"
to allow the opened process step
to continue and execute on the
same context as the calling step.
This will allow expressions to be
evaluated against the calling UI
view or channel.

value string URL Trigger data to use

step (Optional)

Name Type Values Description
id string Any string value Defines starting step

browser (Optional)

XIOS/3 Developer Manual - 2022-06-09 156/164

Name Type Values Description
name string Any string value Component identifier
secure boolean true, false if secure http should be used
features string Any string value Properties separated with a

specific syntax

Note: The features attribute has the following syntax: "property=value, property=value"

The following properties are available: height (int), width (int), status (boolean), toolbar (boolean), location (boolean)

window (Optional)
No attributes available only text() node is used. Available values: "window" (default), "fullscreen", "main".

action (Optional)
No attributes available only text() node is used. Available values: "open" (default), "preview", "edit".

context (Optional)
No attributes available only text() node is used. Available values: true, false, clone. If element and no values are supplied, default will be true
if process is opened within an application package, otherwise false. If set to clone a copy of the context will be used.

focus (Optional)
This element regulates if the window should be focused when opened. If set to false the window will be opened as minimized.

No attributes available only text() node is used. Available values: true (default), false.

handleClose (Optional)
This element will allow the application the fire the "Closing" event when trying to close a window allowing the developer to decide what will
happen when the "X" is clicked. If true is set the application will not close when the "X" is clicked.

No attributes available only the text() node is used. Available values: false (default), true.

Syntax and Examples
Syntax

1 <operation name="open" value="[string]">
2 <name>[string]</name>
3 <trigger value="[URL]"/>
4 <step id="[string]"/>
5 <param name="[string]" value="[string]"/>
6 <window>[enumeration]</window>
7 <action>[enumeration]</action>
8 <context>[boolean]</context>
9 <focus>[boolean]</focus>

10 <handleClose>[boolean]</handleClose>
11 </operation>

Example 1

1 <operation name="open" value="dashboard/processes/cli.xml">
2 <context>true</context>
3 <trigger value="!"/> <!-- This transfers the current context into the called step -->
4 <step id="executeCommand"/>
5 </operation>

Example: Modularize process code into several process files, have the new process execute within the same context as the calling process.

Example 2

1 <operation name="open" value="xios/apps/shell/shell.xml">
2 <step id="1"/>
3 <param name="subject" value="Hello"/>
4 <param name="message" value="This is a longer parameter that is send using operation open"/>
5 <context>true</context>
6 <focus>true</focus>
7 <handleClose>true</handleClose>
8 </operation>

Example: Open shell application and start with first step

Related topics
close

print
This operation is used to print documents.

Usage
The default configuration of the operation will print using a default XSL that will transform the XML data to HTML. For this no transform
element needs to be defined just the value attribute which contains a reference to the data document to print.

If another xsl transformer should be used then it can be defined using the transform element, by setting the type attribute to "xsl" and the
value attribute to the URL pointing to the xsl transformer.

If there is a need to print plain XML then the type attribute of the transform element to "xml".

Attributes

Required Attributes

Name Type Values Description
name string print Defines the print operation

XIOS/3 Developer Manual - 2022-06-09 157/164

value string Expression Defines which data/document to
print

Optional Attributes

Name Type Values Description
debug boolean true, false If true the output will open in a

new tab instead of being printed.

Child Elements

transform (Optional)
This element is used to configure how the data should be printed.

Attributes

Required Attributes

Name Type Values Description
type enumeration html, xml, xsl Defines to what the data should

be transformed

Optional Attributes

Name Type Values Description
value string URL Defines which XSL transformer to

used when type is xsl

Syntax and Examples
Syntax

1 <operation name="print" value="[Expression]">
2 <transform type="[enumeration]" value="[string]"/>
3 </operation>

Example

1 <operation name="print" value="{#view#richtext.getValue()}"/>

Example: This will perform a print on the contents of a richtext component

1 <operation name="print" value="#Help#content">
2 <transform type="xsl" value="apps/myapp/transformers/specialprinter.xsl">
3 <style href="xios/apps/help/layout/help.css"/>
4 </transform>
5 </operation>

Example: This will perform a print on the contents of thge trigger using a custom transformer

rollBack
This operation is used to rollback transactions.

Usage
The Transactionmanager (#TransactionManager) keeps track of all transactions made in the session and by using the rollBack operation we
can revert the document to a previous state. This is possible since all transactions are stored locally during the session.

The rollBack operation allows you to rollback the changes made to a certain document by providing the URL to that specific document in the
value attribute. Doing this will trigger a rollback only for that document and will not affect any other transactions every if they occurred after
the last transaction in the specific document.

If we make a reference to the transactionManager (#TransactionManager) in the value attribute and it has a selection, it will roll-back to the
selected transaction. To only limit the rollBack to a certain transaction of a certain document you need to provide the documents child
element with the text() value "current". This will inform the system that the rollBack should only be performed on a single document, leaving
all other transactions intact.

Attributes

Required Attributes

Name Type Values Description
name string rollBack Defines the rollBack operation
value expression expression Defines the XML that contains all

the changes made

Child Elements

model (Optional)
This element does does not have any attributes and only uses the text() node. Available values are: (default), data. Where "data" removes
the selection and sets the xpath to the root.

documents (Optional)
This element does not have any attributes and only uses the text() node. Available values are "current". Where "current" informs the system
that the rollBack should only effect the file currently selected in the #TransactionManager.

Syntax and Examples
XIOS/3 Developer Manual - 2022-06-09 158/164

Syntax

1 <operation name="rollBack" value="[URL|Expression]"/>

Example

1 <operation name="rollBack" value="#TransactionManager">
2 <documents>current</documents>
3 </operation>

Example: This will perform a rollBack of the originator file of the selected transaction in the TransactionManager, to the current selected transaction

setSelection
This operation is used to set selections to components that are bound to data.

Usage
Using this operation one can predefine a selection thus emulating the selection of an end-user. Because of this the setSelection might trigger
the Select event.

The operation works with the following components:

Calendar, Editor, Grid, ListView, Media, Tree

Attributes

Required Attributes

Name Type Values Description
name string setSelection Defines the setSelection

operation

Child Elements

component (Required)

Name Type Values Description
view string Any string value Name of view where the

component is located
name string Any string value Name of the component which

the operation is to be performed
on

item (Child element of component. Required)

Name Type Values Description
select xpath xpath Relative or absolute xpath

selection

Syntax and Examples
Syntax

1 <operation name="setSelection">
2 <component view="[string]" name="[string]">
3 <item select="[xpath]"/>
4 </component>
5 </operation>

Example

1 <operation name="setSelection">
2 <component view="Explorer" name="folderSelector">
3 <item select="/fs:folder/fs:folder[1]"/>
4 </component>
5 </operation>

Example: Process code for the decision operation

Related operations
bind

save
This operation is used to save XML documents.

Usage
Saving documents on the XIOS/3 filesystem is done using this operation. To learn how to create files see "Managing Files" section. A
reference to the file saved in placed in the value attribute. To make a "save as" dialogue appear an child element named "saveas" must be
added.

The saveas functionality is useful when creating new XML node sets using create or alias model new.

When a document is saved, the meta data of the document will be updated.

Note: When working with with a file the document must be saved. Even though a document might appear to to saved without having to save
it, that is just because it has been transaction handled however it has not been saved by the server. Next time a new copy of the document is
loaded it will load the last saved document.

When working with meta data and file listings you do not need to save the changes as the framework will treat this data specially and save it
automatically.

XIOS/3 Developer Manual - 2022-06-09 159/164

Attributes

Required Attributes

Name Type Values Description
name string save Defines the save operation
value string, expression string, expression The file to save

Child Elements

saveas (Optional)
No attributes available. The saveas element will trigger a "Save As" dialog.

Syntax and Examples
Syntax

1 <operation name="save" value="[string|expression]"/>

Example

1 <operation name="save" value="home://Documents/myfile.xml"/>

Example: Process code for the open operation

1 <operation name="save" value="$dataDoc">
2 <saveas/>
3 </operation>

Example: Saving a file with a save dialog

1 <operation name="save" value="$dataDoc">
2 <saveas/>
3 <folder>home://Documents</folder>
4 <title>Save Presentation</title>
5 </operation>

Example: Saving a file with a save dialog with pre determined folder and dialog title

Related operations
close

share
This operation is used for actions related to Window Sharing and Gesture Based Collaboration.

Usage
view

The value attribute on the operation element is used to define which view to share. If the attribute is not provided then the selected view will
be automatically chosen.

The view element has three attributes which define how the window sharing will be initiated. The action attribute defines if the session is to
be initiated (singleton or clone) or if it should be ended (end). When initiated the option "singleton" means that both users share a single
window which can be dragged across the two users screens, allowing only a single user to work at the document. When "clone" mode is used
then both users will see the window simultaneously and both can work at the document at the same time.

When initiating a share window session then the attibutes user and direction are used. The user attribute defined to whom the window
should be shared, while the direction attribute defines in which direction the window should be shared (this is only relavant when the share
window mode is 'singleton' since only a single window is shared across both screens).

zone

Currently the operation is used to define a user's friends to a specific sharebar side.

Attributes

Required Attributes
None Available

Optional Attributes

Name Type Values Description
value string view:instance Defines which and instance view

to share (Only when using the
view element)

Child Elements

view
This element is used when sharing application windows between other users.

Required Attributes

Name Type Values Description

XIOS/3 Developer Manual - 2022-06-09 160/164

action enumeration singleton, clone, end Defines which action to perform.
end will terminate the session
while singleton and clone will
initiate it

Optional Attributes

Name Type Values Description
direction enumeration left, right In which direction to window

should be shared (Only for
singleton mode)

user string Any string value The user to which the window
should be shared

zone
This element is used when defining a share zone, that is to define that a friend should be positioned at a specific sharebar.

Note: This is required in order for Window Sharing to work.

Required Attributes

Name Type Values Description
direction enumeration right, left Defines in which sharebar the

friend should be positioned
user string Any string value A user from the #Friends

document to positioned in the
sharebar

Optional Attributes
None Available

Syntax and Examples
Syntax

1 <operation name="share">
2 <zone direction="[enumeration]" user="[string]"/>
3 </operation>

Example

1 <operation name="share">
2 <zone direction="right" user="goran"/>
3 </operation>

split
This operation is used to split a string in to an XML node-set

Usage
By supplying the operation a string in the value attribute of the operation element we can split the string by almost any token. Observe that
while expressions are allowed in the value attribute that they must be evaluated to strings so that they become strings. This is done writing
the term "use" in the text() node of the value child elements. By setting this to use expression in the value attribute of the operation is
interpreted as text and not an expression.

The document element is the name object created and then used when referencing to the new xml node-set. The token element contains the
token that will be used to split up the string. Observe that all of these do not have any attributes; instead their values are placed inside the
text() node.

The node-set is available as the value provided in the document node and is an XML document.

Tip: If you are trying to use space as the split token then you must place the space inside a CDATA section like such:

<token><![CDATA[]]></token>

Attributes

Required Attributes

Name Type Values Description
name string split Defines the split operation
value string string or evaluated expression String to split

Child Elements

value (Required)
No attributes. Value supplied in text() node. Available values: use.

document (Required)
No attributes. Value supplied in text() node.

token (Required)
No attributes. Value supplied in text() node.

Syntax and Examples
Syntax

XIOS/3 Developer Manual - 2022-06-09 161/164

1 <operation name="split" value="[string]">
2 <value>[enumeration]</value>
3 <document>[string]</document>
4 <token>[string]</token>
5 </operation>

Syntax of XML node-set returned

1 <split>
2 <item>value</item>
3 <item>value</item>
4 <item>value</item>
5 </split>

Example

1 <operation name="split" value="{$time}">
2 <value>use</value>
3 <document>#arrTime</document>
4 <token>:</token>
5 </operation>
6 <alias name="Hours" value="{#arrTime#/split/item[1]}"/>
7 <alias name="Minutes" value="{#arrTime#/split/item[2]}"/>

Example: Time alias is split up using the colon as token. We then create two separate aliases (Hours and Minutes) for the splitted time string. The first item in split will
contain the time and the second will contain minutes.

Dictionary
A dictionary of terms used in this documentation. Some terms are specific and thier explanation applies when developing in XIOS/3.

atom namespace
The atom namespace is a W3C standard.

It is used frequently when working with the XIOS/3 filesystem, due to the reason that all XIOS/3 file listings are returned as atom feeds.

Namespace declaration

xmlns:atom="http://www.w3.org/2005/Atom"

Reserved atom elements (as defined by the Atom specification)

atom:author
atom:category
atom:content
atom:contributor
atom:id
atom:link
atom:published
atom:rights
atom:source
atom:summary
atom:title
atom:updated
atom:email
atom:entry
atom:feed
atom:generator
atom:icon
atom:logo
atom:name
atom:subtitle
atom:uri

CSS Syntax
CSS is used to override the components default style by using the notation key:value; repeatedly

Content-Type
MIME value describing the content of the file.

Content-Type Description
text/html HTML
text/plain Plain Text
image/gif GIF Image
image/jpeg JPEG Image
image/png PNG Image
video/mpeg MPEG Video
audio/wav WAV Audio
audio/mpeg MP3 Audio
video/mov Quicktime Video
video/quicktime Quicktime Video

XIOS/3 Developer Manual - 2022-06-09 162/164

http://www.w3.org

video/x-ms-wmv Windows Media Video

audio/x-ms-wma Windows Media Audio
audio/x-realaudio RealPlayer Audio/Video (.rm)
audio/x-pn-realaudio RealPlayer Audio/Video (.ram)
video/x-msvideo AVI Video
video/avi AVI Video
application/pdf PDF Document
application/msword MS Word .doc file
application/zip ZIP File

data transaction
A change in XML data that is bound to a component.

dc namespace
The dc namespace (Directory) is a namespaced used by XIOS/3 to markup which meta data should be indexed and searchable.

Namespace declaration

xmlns:dc="http://xcerion.com/directory.xsd"

fs namespace
The fs namespace is used when handling folders in the XIOS/3 filesystem

Namespace declaration

xmlns:fs="http://xcerion.com/folders.xsd"

l namespace
The l namespace is used when handling language localizations of applications.

Namespace declaration

xml:l="http://xios3.com/lang"

local-name
Local-name refers to the element when the namespace is omitted.

Element without namespace (local-name)

<myElment/>

Element with dc namespace

<dc:myElment/>

mutex
Mutual Exclusion. A state when only one component (e.g. panel) can be visible at any given time.

MIME type
See Content-Type for more information.

ni namespace
The ni namespace (No Index) is a namespace used by XIOS/3 to markup which meta data should NOT be indexed and searchable.

Namespace declaration

xmlns:ni="http://xcerion.com/noindex.xsd"

text()
The text() is a XML node that is equal to the text between the starting and closing XML element.

Example

1 <myElement attr="val">Welcome to the Jungle</myElement>

In the above example the following is considered to be the text() node = "Welcome to the Jungle".

tool-tip
Tool-tip is a text that appears when hovering over a component.

xlink namespace
The atom namespace is a W3C standard.

It is used when working with xlink (xlink:actuate, xlink:href and xlink:type).

The namespace declaration should be present on all files in all application packages and any file that utilizes xlink functionality.
XIOS/3 Developer Manual - 2022-06-09 163/164

http://www.w3.org

Namespace URI

http://www.w3.org/1999/xlink

Namespace declaration

xmlns:xlink="http://www.w3.org/1999/xlink"

XIOS/3 Developer Manual - 2022-06-09 164/164

	Table of Contents
	XIOS/3 Development
	Launching XIOS/3
	Application Development
	The MVC Design
	Structure
	Data XML (Model)
	UI XML (View)
	Process XML (Control)
	Introducing the XIOS/3 Filesystem
	File Properties
	System Permissions
	Performing Actions
	Using the XIOS/3 Filesystem
	Overall Structure
	Managing Files
	Managing Folders
	Managing Groups
	Managing File Types
	Searching the Filesystem
	Development Tools
	XIOS Applications
	Icons and Images
	Application Packaging
	Overall Structure
	Regular Package
	Inline Package
	Widget
	Extending XIOS/3
	Additional Components
	Additional Operations
	UI Development
	Overall Structure
	View
	Toolbars
	Menubars
	Layout
	Using Components
	Types
	Attributes
	Attribute values
	Common attributes
	Events
	AlignCenterRelease
	AlignCenterSelect
	AlignJustifiedRelease
	AlignJustifiedSelect
	AlignLeftRelease
	AlignLeftSelect
	AlignRightRelease
	AlignRightSelect
	Attached
	BGColorRelease
	BGColorSelect
	Blur
	BoldRelease
	BoldSelect
	BulletListRelease
	BulletListSelect
	Change
	Changed
	Click
	Close
	Closing
	Complete
	Completed
	ContextMenu
	DateChanged
	DecorationRelease
	DecorationSelect
	Delete
	Detached
	DoubleClick
	drawingComplete
	DrawMode
	drawModeOff
	Drop
	Edit
	EditEnd
	End
	Empty
	Escape
	FGColorRelease
	FGColorSelect
	Focus
	FontFamilyRelease
	FontFamilySelect
	FontSizeRelease
	FontSizeSelect
	Fullscreen
	Header
	HeaderContextMenu
	Home
	Hover
	HttpHyperlink
	Init
	ItalicRelease
	ItalicSelect
	Key
	Loading
	Ready
	Menu
	MediaEnded
	MediaRange
	Move
	MoveItem
	Next
	NumberListSelect
	Paste
	Previous
	Release
	Return
	Saved
	Select
	SelectedDate
	SelectMode
	SelectedMore
	SetActive
	Show
	SubjectMore
	Tab
	TriggerEvent
	UnSelect
	UnSelection
	UpdateTime

	Actions
	activate
	add
	clear
	disable
	enable
	hide
	open
	readonly
	readwrite
	release
	select
	setValue
	show
	unbind

	Methods
	activate
	adjustVolume
	appointmentColor
	attach
	callFlash
	changeInterval
	clear
	clearContent
	clearSearchLines
	copyToClipboard
	deleteShape
	deselect
	detach
	disableAutoSpellcheck
	edit
	enableAutoSpellcheck
	execCommand
	executeCommand
	executeScript
	flashTab
	focus
	focusItem
	focusSelection
	getCurrentLabel
	getCurrentPosition
	getDataLocation
	getDateValue
	getDimension
	getEndDate
	getEndTime
	getLat
	getLineBottomMargin
	getLineTopMargin
	getLng
	getMapType
	getZoom
	getNodePath
	getParam
	getPaste
	getSelected
	getSelectedItem
	getSelectedText
	getSelection
	getSelectionLength
	getSelectionValue
	getSrcDataLocation
	getStartDate
	getStartTime
	getText
	getUpdateEnabled
	getValue
	getVolume
	gotoLine
	hideColumn
	haveSelection
	insertHyperlink
	insertImage
	insertText
	lineNumbers
	maximize
	minimize
	modStyle
	navigateUp
	next
	nodeExpanded
	pasteFromClipboard
	pause
	play
	previous
	print
	printPresentation
	release
	releaseEnter
	removeList
	repeat
	resetSelection
	restore
	restoreAppDlg
	scale
	search
	searchMap
	selectAll
	selectFirstRow
	selectLastRow
	selectTab
	setBulletType
	setDimension
	setEditableMode
	setFont
	setIcon
	setImage
	setLabel
	setLineMargin
	setLineIndent
	setLook
	setMode
	setMute
	setParam
	setRange
	setSelect
	setSelectedDate
	setSelectionEx
	setSelectionRoot
	setSkin
	setTitle
	setType
	setUpdateEnabled
	setValue
	setView
	setVolume
	setWeekStartDay
	showColumn
	showControls
	shuffle
	sortColumn
	stop
	takeEnter
	toggleCheckable
	toggleNode
	update
	updateData
	updateRedraw
	wordWrap

	Rules
	Look and Feel
	Process Development
	Overall Structure
	Process
	Triggers
	Steps
	Aliases
	Alias Types
	System Aliases
	Operation
	Event Model
	Component Events
	View Events
	System Events
	Using Expressions
	Definition
	Using Operations
	Attributes
	Examples
	Applications
	Book List
	Layout
	Column Layouts
	Mixed Layouts
	Row Layouts
	References
	ActionUrls
	lastLogins
	leaveGroup
	search
	searchUser

	Components
	Accordion
	Breadcrumbs
	Browser
	Button
	ButtonBox
	Calendar
	CheckBox
	Clock
	Color
	ComboBox
	Container
	DataItem
	Date
	Divider
	Form
	Grid
	Group
	Image
	Input
	Item
	List Item
	Menu Item
	Plate Item
	Label
	List
	ListView
	Map
	Media
	Menu
	MenuBar
	Panel
	Plate
	Radio
	Render
	RichText
	Shell
	Slider
	TabStrip
	TextArea
	ToolBar
	Tree

	Functions
	apply-locale
	capitalize
	concat
	count
	count-selection
	changes
	channelname
	contains
	document
	downcase
	escape-string
	filename
	filetype
	folderexist
	folderid
	foldername
	folderpath
	format-bytes
	localizedate
	formatdate
	get-label
	index-of
	is-alias
	is-open
	is-running
	local-name
	match
	parsedate
	position
	random
	read
	replace
	selected-text
	selection
	substring
	trim
	trim
	upcase
	xml

	Process Operations
	action
	bind
	call
	callMethod
	callService
	change
	close
	create
	channel
	debug
	decision
	filesystem
	foreach
	friends
	groups
	login
	navigate
	open
	print
	rollBack
	setSelection
	save
	share
	split

	Dictionary
	atom namespace
	CSS Syntax
	Content-Type
	data transaction
	dc namespace
	fs namespace
	l namespace
	local-name
	mutex
	MIME type
	ni namespace
	text()
	tool-tip
	xlink namespace

